Answer:
Explanation:
We shall consider a Gaussian surface inside the insulation in the form of curved wall of a cylinder having radius equal to 3mm and unit length , length being parallel to the axis of wire .
Charge inside the cylinder = 250 x 10⁻⁹ C .
Let E be electric field at the curved surface , perpendicular to surface .
Total electric flux coming out of curved surface
= 2π r x 1 x E
= 2 x 3.14 x 3 x 10⁻³ E
According to Gauss's theorem , total flux coming out
= charge inside / ε ( 250 x 10⁻⁹C charge will lie inside cylinder )
= 250 x 10⁻⁹ / 2.5 x 8.85 x 10⁻¹² ( ε = 2.5 ε₀ = 2.5 x 8.85 x 10⁻¹² )
= 11.3 x 10³ weber .
so ,
2 x 3.14 x 3 x 10⁻³ E = 11.3 x 10³
E = 11.3 x 10³ / 2 x 3.14 x 3 x 10⁻³
= .599 x 10⁶ N /C .
We first calculate the acceleration on the ball using:
2as = v² - u²; u = 0 because ball is initially at rest
a = (36)²/(2 x 0.35)
a = 1850 m/s²
F = ma
F = 0.058 x 1850
= 107.3 Newtons
Answer:
Explanation:
Given
Two projectile is fired vertically upward
One has 4 times the mass of other
When Projectile is fired their trajectory is independent of mass of object. Also if they launched with same speed then both achieved same maximum height in same time and will hit the ground at the same moment.
Three bonds
<span>Here are the combinations of hydrogen with boron, carbon, nitrogen, oxygen and fluorine. Generally to complete an octet Group 4A will form four bonds, Group 5A will form 3 bonds, Group 6A will form 2 bonds, etc. Three bonds: Boron is in group 3A. It has three valence electrons.</span>