Answer : The pH of 0.289 M solution of lithium acetate at
is 9.1
Explanation :
First we have to calculate the value of
.
As we know that,

where,
= dissociation constant of an acid = 
= dissociation constant of a base = ?
= dissociation constant of water = 
Now put all the given values in the above expression, we get the dissociation constant of a base.


Now we have to calculate the concentration of hydroxide ion.
Formula used :
![[OH^-]=(K_b\times C)^{\frac{1}{2}}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%28K_b%5Ctimes%20C%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D)
where,
C is the concentration of solution.
Now put all the given values in this formula, we get:
![[OH^-]=(5.5\times 10^{-10}\times 0.289)^{\frac{1}{2}}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%285.5%5Ctimes%2010%5E%7B-10%7D%5Ctimes%200.289%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D)
![[OH^-]=1.3\times 10^{-5}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.3%5Ctimes%2010%5E%7B-5%7DM)
Now we have to calculate the pOH.
![pOH=-\log [OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%20%5BOH%5E-%5D)


Now we have to calculate the pH.

Therefore, the pH of 0.289 M solution of lithium acetate at
is 9.1
Answer:
answer it by yourself and own way
Peptide bonds are amide connections between two amino acids' -carboxyl and -amino groups.
The covalent link created by the dehydration reaction (loss of a water molecule) between the carboxyl group of one amino acid and the amino group on the next is known as a peptide bond. Peptide bonds are created in polypeptides through a condensation reaction between the carboxyl groups of one amino acid and the amino groups of the following amino acid, all while removing water. When the carboxyl group of one molecule combines with the amino group of the other molecule, releasing a molecule of H2O as a result, a peptide bond is created between the two molecules.
Learn more about peptide here-
brainly.com/question/13151387
#SPJ4
It will have an overall positive charge.