Answer:
a. Rate = k×[A]
b. k = 0.213s⁻¹
Explanation:
a. When you are studying the kinetics of a reaction such as:
A + B → Products.
General rate law must be like:
Rate = k×[A]ᵃ[B]ᵇ
You must make experiments change initial concentrations of A and B trying to find k, a and b parameters.
If you see experiments 1 and 3, concentration of A is doubled and the Rate of the reaction is doubled to. That means a = 1
Rate = k×[A]¹[B]ᵇ
In experiment 1 and to the concentration of B change from 1.50M to 2.50M but rate maintains the same. That is only possible if b = 0. (The kinetics of the reaction is indepent to [B]
Rate = k×[A][B]⁰
<h3>Rate = k×[A]</h3>
b. Replacing with values of experiment 1 (You can do the same with experiment 3 obtaining the same) k is:
Rate = k×[A]
0.320M/s = k×[1.50M]
<h3>k = 0.213s⁻¹</h3>
Answer:
True; When one side of a molecule is electronegative (δ-) and the other side of the
molecule is electropositive (δ+), it is said to have a dipole moment.
Explanation:
A dipole moment exists in a molecule as a result of differences in the electronegativity values between the atoms of the elements involved in the chemical bonding.
When a strogly electronegative atom such as oxygen or chlorine is chemically bonded to a less electronegative or an electropositive atom such as hydrogen, there is an uneven sharing of the electrons involved in the bonding. The more electronegative atoms tends to draw the shared electrons mostly to themselves. This induces a partially negative charge (δ-) on them while leaving the electropositive atoms with a partially positive charge (δ+).
Water is an example of a molecule having a dipole moment. The oxygen atoms are more electronegative than hydrogen and as such draw the shared electrons to themselves more, inducing a partial positive charge (δ+) on the hydrogen atoms while they themselves develop a partial negative charge (δ-).
Answer:
As potassium chloride (KCl) dissolves in water, the ions are hydrated. ... Ion-dipole forces attract the positive (hydrogen) end of the polar water molecules to the negative chloride ions at the surface of the solid, and they attract the negative (oxygen) ends to the positive potassium ions.
Answer:
rate of recrystallization = 4.99 × 10⁻³ min⁻¹
Explanation:
For Avrami equation:

To calculate the value of k which is a dependent variable for the above equation ; we have:


The time needed for 50% transformation can be determined as follows:
![y = 1-e ^{(-kt^n)} \\ \\ e^{(-kt^n)} = 1-y\\ \\ -kt^n = In(1-y) \\ \\ t =[ \dfrac{-In(1-y)}{k}]^{^{1/n}}](https://tex.z-dn.net/?f=y%20%3D%201-e%20%5E%7B%28-kt%5En%29%7D%20%5C%5C%20%5C%5C%20e%5E%7B%28-kt%5En%29%7D%20%3D%201-y%5C%5C%20%5C%5C%20-kt%5En%20%3D%20In%281-y%29%20%5C%5C%20%5C%5C%20t%20%3D%5B%20%5Cdfrac%7B-In%281-y%29%7D%7Bk%7D%5D%5E%7B%5E%7B1%2Fn%7D%7D)
![t_{0.5} =[ \dfrac{-In(1-0.4)}{9.030 \times 10^{-7}}]^{^{1/2.5}}](https://tex.z-dn.net/?f=t_%7B0.5%7D%20%3D%5B%20%5Cdfrac%7B-In%281-0.4%29%7D%7B9.030%20%5Ctimes%2010%5E%7B-7%7D%7D%5D%5E%7B%5E%7B1%2F2.5%7D%7D)
= 200.00183 min
The rate of reaction for Avrami equation is:


rate = 0.00499 / min
rate of recrystallization = 4.99 × 10⁻³ min⁻¹
Answer:
Due to the short term of its action it has in the stomach environment
Explanation:
Aluminum hydroxide, magnesium hydroxide, and simethicone is a combination drug used for the treatment of upset stomach, acid indigestion, bloating heartburn caused by gas, or stomach discomfort caused by eating or drinking too much