Bonds between carbon and oxygen are more polar than bonds between sulfur and oxygen. nevertheless, sulfur dioxide (SO₂) exhibits a dipole moment while carbon dioxide (CO₂) does not because of the difference in their shape, CO₂ is having linear geometry thus exhibit zero dipole moment while SO₂ is having bent shape thus exhibit dipole moment. So, despite the fact that bonds between carbon and oxygen are more polar than bonds between sulfur and oxygen. nevertheless, sulfur dioxide (SO₂) exhibits a dipole moment while carbon dioxide (CO₂) does not.
Lets let our mass equal 3 on alletals and solve using d=m/v equation
Aluminum
V=3/2.70=1.11
Silver
V=3/10.5=.286
Rhenium
V=3/20.8=.144
Nickel
V=3/8.90=.337
This gives us the following list from largest to smallest Aluminum, Nickel, Silver, and Rhenium
Answer:
may be...... false not sure
Explanation:
Answer:Um... I think 5000 i am not really sure
Explanation: I Dont Really Know
Answer:
E₁ ≅ 28.96 kJ/mol
Explanation:
Given that:
The activation energy of a certain uncatalyzed biochemical reaction is 50.0 kJ/mol,
Let the activation energy for a catalyzed biochemical reaction = E₁
E₁ = ??? (unknown)
Let the activation energy for an uncatalyzed biochemical reaction = E₂
E₂ = 50.0 kJ/mol
= 50,000 J/mol
Temperature (T) = 37°C
= (37+273.15)K
= 310.15K
Rate constant (R) = 8.314 J/mol/k
Also, let the constant rate for the catalyzed biochemical reaction = K₁
let the constant rate for the uncatalyzed biochemical reaction = K₂
If the rate constant for the reaction increases by a factor of 3.50 × 10³ as compared with the uncatalyzed reaction, That implies that:
K₁ = 3.50 × 10³
K₂ = 1
Now, to calculate the activation energy for the catalyzed reaction going by the following above parameter;
we can use the formula for Arrhenius equation;

If
&





E₁ ≅ 28.96 kJ/mol
∴ the activation energy for a catalyzed biochemical reaction (E₁) = 28.96 kJ/mol