Answer:
The reaction quotient (Q) before the reaction is 0.32
Explanation:
Being the reaction:
aA + bB ⇔ cC + dD
![Q=\frac{[C]^{c} *[D]^{d} }{[A]^{a}*[B]^{b} }](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%2A%5BB%5D%5E%7Bb%7D%20%20%7D)
where Q is the so-called reaction quotient and the concentrations expressed in it are not those of the equilibrium but those of the different reagents and products at a certain instant of the reaction.
The concentration will be calculated by:

You know the reaction:
PCl₅ (g) ⇌ PCl₃(g) + Cl₂(g).
So:
![Q=\frac{[PCl_{3} ] *[Cl_{2} ] }{[PCl_{5} ]}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BPCl_%7B3%7D%20%5D%20%2A%5BCl_%7B2%7D%20%5D%20%7D%7B%5BPCl_%7B5%7D%20%5D%7D)
The concentrations are:
- [PCl₃]=

- [Cl₂]=

- [PCl₅]=

Replacing:

Solving:
Q= 0.32
<u><em>The reaction quotient (Q) before the reaction is 0.32</em></u>
Answer:
Explanation:
The formula of the reaction:
KClO₂ → KCl + O₂
To assign oxidation numbers, we have to obey some rules:
- Elements in an uncombined state or one whose atoms combine with one another to form molecules have an oxidation number of zero.
- The charge on simple ions signifies their oxidation number.
- The algebraic sum of all the oxidation number of all atoms in a neutral compound is zero. For radicals with charges, their oxidation number is the charge.
The oxidation number of K in KClO₂:
K + (-1) + 2(-2) = 0
K-5 = 0
K = +5
The oxidation number of K in KCl:
K + (-1) = 0
K = +1
The oxidation number Cl in KClO₂ is -1
For Cl in KCl, the oxidation number is -1
For O in KClO₂, the oxidation number is (2 x -2) = -4
For O in O₂, the oxidation number is 0
K moves from an oxidation state of +5 to +1. This is a gain of electrons and K has undergone reduction. We then say K is reduced.
O moves from an oxidation state of -4 to 0. This is a loss of electrons and O has undergone oxidation. We say O is oxidized.
To determine the mass of the sample, first find the volume difference after and before the aluminum was placed, the volume change is equal to the volume of the submerged object, in this case aluminum.
Then knowing volume of aluminum and the density of it, we can solve for the mass.
D = m/v
Dv = m
2.7 g/ml • 8 ml = 21.6 grams.
Answer:
C is the excess reactant.
Explanation:
Reaction is C + O2 --> CO2
1mol of C required to react with 1mol O2
Therefore 15 - 10 = 5moles of C will be in excess
Simple dimensional analysis.
okay so youll need a periodic table to look up the molar mass. youll be given either an amount of grams or moles.