From the information given above,
Mass [M] = 28 g
Change in temperature = 29 - 7 = 22
Specific heat of iron = 0.449 [This value is constant]
The formula for calculating heat absorbed, Q is
Q = Mass * Specific heat of Iron * change in temperature
Q = 28 * 0.449 * 22 = 276.58 J<span />
Reflection from such a rough surface is called diffuse reflection and appears matte
<h2>
Answer: 0.17</h2>
Explanation:
The Stefan-Boltzmann law establishes that a black body (an ideal body that absorbs or emits all the radiation that incides on it) "emits thermal radiation with a total hemispheric emissive power proportional to the fourth power of its temperature":
(1)
Where:
is the energy radiated by a blackbody radiator per second, per unit area (in Watts). Knowing 
is the Stefan-Boltzmann's constant.
is the Surface area of the body
is the effective temperature of the body (its surface absolute temperature) in Kelvin.
However, there is no ideal black body (ideal radiator) although the radiation of stars like our Sun is quite close. So, in the case of this body, we will use the Stefan-Boltzmann law for real radiator bodies:
(2)
Where
is the body's emissivity
(the value we want to find)
Isolating
from (2):
(3)
Solving:
(4)
Finally:
(5) This is the body's emissivity
<span>work =V*Q
=12*50*10^-6
The total work done will be equal to
work = V.Q
which means
w= 12 . 50.10^-6
Hence,
w= 0.0006 J</span>
Answer:
8 seconds
Explanation:
power (P) is defined as the rate at which work is done.
power is measured in Watts (W) , when the work done is measured in Joules (J) and time in seconds
by the definition of power,
