Answer:
<u>0.04 °C⁻¹</u>
Explanation:
First, we need to calculate linear expansivity, then after finding that value, we can move on to finding the area expansivity.
<u />
=============================================================
Finding Linear Expansivity :
⇒ α = Final length - Original length / (Original length × ΔT)
⇒ α = 9 - 4 / (4 × 70 - 20)
⇒ α = 5 / 5 × 50
⇒ α = <u>0.02</u>
============================================================
Finding Area Expansivity :
⇒ Area Expansivity = 2 × Linear Expansivity
⇒ β = 2 × α
⇒ β = 2 × 0.02
⇒ β = <u>0.04 °C⁻¹</u>
The answer is, "B", "Ammonia".
Answer:
No
Explanation:
Let the reference origin be location of ship B in the beginning. We can then create the equation of motion for ship A and ship B in term of time t (hour):
A = 12 - 12t
B = 9t
Since the 2 ship motions are perpendicular with each other, we can calculate the distance between 2 ships in term of t

For the ships to sight each other, distance must be 5 or smaller







Since
then

So our equation has no solution, the answer is no, the 2 ships never sight each other.
Answer:
Tension in the supporting cable is = 4,866 N ≅4.9 KN
Explanation:
First of all, we need to understand that tension is a force, so the motion law
F = Ma applies perfectly.
From Newtons third law of motion, action and reaction are equal and opposite. This means that the force experienced by the elevator, is equal to the tension experienced by the spring.
Parameters given:
Mass of load = 1650 kg
Acceleration of load = ?
The acceleration of the load can be obtained by diving the change in velocity by the time taken. But we need to know the time taken for the motion to 41 m.
Time taken = distance covered / velocity
=
= 3.73 seconds
∴Acceleration = ( initial velocity - final velocity )/ time taken
Note: Final velocity is = 0 since the body came to a rest.
Acceleration =
= 2.95m/
Force acting on the cable = mass of elevator × acceleration of elevator
= 1650 × 2.95 = 4869.5 kg ≅ 4.9 KN
150 horsepower and 6000 ft-lb of torque.