Archimedes found a piece of gold and a piece of silver with exactly the same mass. He dropped the gold into a bowl filled to the brim with water and measured the volume of water that spilled out. Then he did the same thing with the piece of solver. Although both metals had the same mass, the silver gad a larger volume; therefore, it displaced more water than the gold did. That's because the silver was less dense than gold. Afterwards he applied the same method to the crown for the king he served who had got a new crown from a jeweler who gave it to him. Archimedes found a piece of pure gold that had the same mass as the crown. He placed the pure gold chuck and the crown in water, one at a time. The crown displaced more water the piece of gold. Therefore, its density was less than pure gold.
160w/4 = 40w
1000J/ 4= 250J
a 40w light bulb will consume 250J
The number of cans that would be considered lethal if 10g was lethal and there where 12oz in a can is 419 cans.
<h3>How to convert mass?</h3>
According to this question, caffeine concentration is 1.99 mg/oz.
1.99 milligrams can be converted to grams as follows:
1.99milligrams ÷ 1000 = 0.00199grams
This means that 0.00199grams per oz is the caffeine concentration.
If there were 12 oz in a can, then, 0.00199grams × 12 = 0.02388 grams in 1 can.
This means that if 10grams is considered lethal, 10grams ÷ 0.02388 grams = 419 cans would be lethal for consumption.
Therefore, the number of cans that would be considered lethal if 10g was lethal and there where 12oz in a can is 419 cans.
Learn more about conversion factor at: brainly.com/question/14479308
#SPJ1
Answer:
Ultra violet rays and infrared rays
Explanation:
The electromagnetic radiation in the order of increasing wavelength is given as
Gamma rays
X rays
Ultra violet rays
Visible radiation
Infrared rays
Microwaves
radiowaves
So, the radiations having wavelength more than the visible radiation are infrared radiations and the radiations which having the wavelength less then the visible radiation is Ultraviolet rays.
So, we observe ultra violet radiations and infrared radiations.