Answer:

Explanation:
The proton is under a linear motion with constant acceleration. So, we use the kinemtic equations to calculate its final speed. We know its acceleration, its initial speed and its traveled distance. Thus, we use the following equation:

<h2>
Answer: Earth's orbital path around the Sun</h2><h2>
</h2>
The <u>Ecliptic</u> refers to the orbit of the Earth around the Sun. Therefore, <u>for an observer on Earth it will be the apparent path of the Sun in the sky during the year, with respect to the "immobile background" of the other stars.</u>
<u />
It should be noted that the ecliptic plane (which is the same orbital plane of the Earth in its translation movement) is tilted with respect to the equator of the planet about
approximately. This is due to the inclination of the Earth's axis.
Hence, the correct option is Earth's orbital path around the Sun.
Answer:
<h2>3 m/s^2</h2>
Explanation:
Step one:
given
Mass m= 4kg
Force F= 12N
Required
Acceleration the relation between force, acceleration, and mass is Newton's first equation of motion, which says a body will continue to be at rest or uniform motion unless acted upon by an external force
F=ma
a=F/m
a=12/4
a=3 m/s^2
Answer:
fixed pulley: A pulley system in which the pulley is attached to a fixed point and the rope is attached to the object. ... movable pulley: A pulley system in which the pulley is attached to the object; one end of the rope is attached to a fixed point and the other end of the rope is free.
Explanation:
Answer:
the current in a parallel circuit is found by idk
Explanation: