Answer:
18.33 Ns
Explanation:
As the pitch back speed has the opposite direction as before, the change in velocity would be

So the change in momentum of the ball would be the product of its velocity change and its mass

This is equals to the impulse acted on the ball by the bat, which is 18.33 Ns
The force acting on the ball are unbalanced. Reactionary momentum force (that originated as a result of the swing of the bat) is the most powerful.
Yes friction is acting on the ball. In course of journey it would slow the ball down and make it trace a parabolic path rather than straight path as intended by hitter.
Explanation:
As the hitter hits the ball, momentum of the bat due to swing (mass of the bat*velocity provided by the batsman swinging action of bat) gets transferred on the ball on its impact with the bat.
Since ball’s mass is quite small as compared to the bat, the velocity of the ball increases by the same factor by which the ball’s mass is lower than the bat’s mass. This velocity causes forward motion of the ball (of course in the direction of bat’s motion, here the batsman intends to send the ball straight away hence the ball would move straight).
Various forces on ball is-
- Reactionary momentum force -bat’s force (most powerful force)
- The frictional force of the air (opposing the motion of the ball through the air)
- Gravity force (pulling the ball down to the Earth)
As a combined effect of these force when all the force remains unbalanced, the ball moves away in the straight path under the impact of bats momentum which was most powerful of all.
Frictional force and Gravity force continue acting on the ball. While frictional forces decrease the ball velocity through the air, gravity force pulls it down thus deflecting its direction. Under the combined impact of declining bats momentum, friction force and gravity force, the ball traces a parabolic path (in accordance with the first law of motion from Newton)
Answer:
Option 10. 169.118 J/KgºC
Explanation:
From the question given above, the following data were obtained:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1.61 KJ
Mass of metal bar = 476 g
Specific heat capacity (C) of metal bar =?
Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:
1 kJ = 1000 J
Therefore,
1.61 KJ = 1.61 KJ × 1000 J / 1 kJ
1.61 KJ = 1610 J
Next, we shall convert 476 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
476 g = 476 g × 1 Kg / 1000 g
476 g = 0.476 Kg
Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1610 J
Mass of metal bar = 0.476 Kg
Specific heat capacity (C) of metal bar =?
Q = MCΔT
1610 = 0.476 × C × 20
1610 = 9.52 × C
Divide both side by 9.52
C = 1610 / 9.52
C = 169.118 J/KgºC
Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC
Answer:
The angle formed of the rope with the surface = 40°
Force applied = 125Newtons
The displacement covered by the box =25metres
W= FDcos theta
[125×40×cos(40°) ] Joules
= [ (3125×0.76604444311)]Joules
= 2393.88888472 joules(ans)
Hope it helps
The hotter molecules become, the faster they move around. The colder they are, the more slow and lethargic they are