Answer:
you need to consider the use for the product, how brittle the materials are, how they react to certain things, the cost of the materials, the durability and flexibility of the materials, and how easy to obtain the materials are as well as how they would work and how they would hold
Answer:
40N
Explanation:
Since both weights are connected to one string, you can say that the tensions above each are equal to each other.
If you do the sum of forces for the 4kg mass, then the tension comes out to 40N (if we take gravity to be 10m/s²). But that seemed too good to be true, so I decided to do the work for the 7kg mass as well [which included finding the normal force (N) and plugging it into the sum of forces for the 7kg mass] to find that it also gives 40N as the answer.
If I were to put my process into steps:
- Write out the sum of Forces for both masses
- Set them equal to each other to find normal force (because this is the only unknown)
- Calculate and compare the two tensions to see if they are equal
*This all seems to line up perfectly, but do let me know if my answer doesn't match up with what you might find to he the answer later on.
Answer:
Explanation:
is the magnetic quantum number.
The only possible value for the magnetic quantum number for an electron in an s orbital is 0.
The first three quantun numbers are:
- n: principal quantum number. It may have positive integer values: 1, 2, 3, 4,5, 6, 7, ...
: Azimuthal or angular momentum quantum number. It may have integer values from 0 to n - 1.
This quantum number is related to the type (or shape) of the orbital:
For s orbitals
For p orbitals
For d orbitals
For f orbitals
In this case, it is an s orbital, so we have
.
, the third quantum number can have integer values
to 
Since, for the s orbitals
, the only possible value for
is zero.
He thermal velocity or thermal speed is a typical velocity of the thermal motion of particles which make up a gas, liquid, etc. Thus, indirectly, thermal velocity is a measure of temperature. Technically speaking it is a measure of the width of the peak in the Maxwell–Boltzmann particle velocity distribution.
The stopwatch will be the most useful in determining the kinetic energy of a 50 g battery- powered car traveling a distance of 10 m.
<h3>What is kinetic energy?</h3>
Kinetic energy is the energy of a body possessed due to motion.
This means that for an object to possess kinetic energy, it must be in motion.
The kinetic energy is measured in Joules, which is a product of the mass of the substance and the time taken to travel a distance.
A stopwatch is an instrument used to measure time as one of the components of kinetic energy.
Therefore, the stopwatch will be the most useful in determining the kinetic energy of a 50 g battery- powered car traveling a distance of 10 m.
Learn more about kinetic energy at: brainly.com/question/12669551