A:True because Lithium is the lighest solid and metal and the third lightest element.
Answer:
9:36 and how far it will travel is 26 minutes
Inertia is directly proportional to mass.
What is Walter Lewin famous for?
Walter Hendrik Gustav Lewin (born January 29, 1936) is a Dutch astrophysicist and former professor of physics at the Massachusetts Institute of Technology.
Lewin earned his doctorate in nuclear physics in 1965 at the Delft University of Technology and was a member of MIT's physics faculty for 43 years beginning in 1966 until his retirement in 2009.
According to Walter Levin,
The concept of moment of inertia is demonstrated by rolling a series of cylinders down an inclined plane.
Inertia is the resistance of any physical object to a change in its velocity. This includes changes to the object's speed, or direction of motion. An aspect of this property is the tendency of objects to keep moving in a straight line at a constant speed when no forces act upon them.
By rolling a series of cylinders down on an inclined plane , he demonstrated that a cylinder have a smooth friction.
He compares the rolling cylinder by using hollow cylinder and a heavy cylinder , and finalize the result that a hollow cylinder moves slowly but the heavy cylinder move faster.
Hence , By doing this experiment he explained about the inertia that Inertia depend on the mass of the object. As the heavy the object it will take more time to travel or move.
Learn more about inertia here:brainly.com/question/3268780
#SPJ1
Answer:
The speed is 24 
Explanation:
A wave is a disturbance that propagates through a certain medium or in a vacuum, with transport of energy but without transport of matter.
The wavelength is the minimum distance between two successive points of the wave that are in the same state of vibration. It is expressed in units of length (m).
Frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).
The speed of propagation is the speed with which the wave propagates in the middle, that is, the magnitude that measures the speed at which the wave disturbance propagates along its displacement. Relate wavelength (λ) and frequency (f) inversely proportionally using the following equation:
v = f * λ.
In this case, λ= 8 meter and f= 3 Hz
Then:
v= 3 Hz* 8 meter
So:
v= 24 
<u><em>The speed is 24 </em></u>
<u><em></em></u>