Yes they do because they just have to
The gravitational constant was experimentally measured by W Cavendish using the attraction between big and small lead balls. is true
The correct answer is true
<h3>How do you define gravitational constant?</h3>
the strength of gravity. a factor in use in Newton's gravity law to relate the strength of the gravitational pull between two bodies with their masses and distance from one another. 6.67259 X 10-11 newtons per square kilogram is roughly the gravitational constant. G is its identifier.
<h3> where is the strongest gravity is?</h3>
The gravitational pull of the earth is greatest near sea level, normally, and weakens as you get further from the center, such as to the summit of Mt. Everest. Because the obloid earth was slightly wider, but only by a minor ratio, the gravity just at poles is stronger than that at the equator.
To know more about gravitational constant visit:
brainly.com/question/858421
#SPJ9
Answer:

Explanation:
We are asked to find the force being applied to a book. According to Newton's Second Law of Motion, force is the product of mass and acceleration.

The mass of the book is 0.75 kilograms and the acceleration is 0.3 meters per square second. Substitute these values into the formula.

Multiply.

1 kilogram meter per second squared is equal to 1 Newton. Therefore, our answer of 0.225 kilogram meters per second squared is equal to 0.225 Newtons.

<u>0.225 Newtons of force</u> are applied to the book.
Answer:
32 m/s
Explanation:
The speed of a bus is 30 m/s due East wrt the passenger
He also sees a passenger on the bus walking to the back at 2 m/s.
We need to find the passenger's velocity relative to the bus. As the observer sees that the bus and the passenger are moving in opposite direction. Let v is the relative velocity. So,
v = 30 m/s + 2 m/s
v = 32 m/s
Hence, the passenger's velocity relative to the bus is 32 m/s.
The crate moves at constant velocity, this means that its acceleration is zero, so the net force acting on the crate is zero (Newton's second law).
There are only two forces acting on the crate: the force F applied by the worker and the frictional force, acting in the opposite direction:

, where

is the coefficient of friction and

is the mass of the crate. Since the net force should be equal to zero, the two forces must have same magnitude, so we have:

And so, this is the force that the worker must apply to the crate.