The answer is C. Electrical;mechanical
Electrons are found outside of the nucleus.
The radiation is ultra voilet or Gamma radiation , because their wave length is very short i e 1..0 to 2.5 (angstrom)Ao.
<span>anwser will be
F = ma
where
F = force exerted on the bullet
m = mass of the bullet = 5 gm (given) = 0.005 kg.
a = acceleration of the bullet
Substituting appropriately,
F = 0.005a --- call this Equation 1
Next working equation is
Vf^2 - Vo^2 = 2as
where
Vf = velocity of the bullet as it leaves the muzzle = 326 m/sec (given)
Vo = initial velocity of bullet = 0
a = acceleration of bullet
s = length of the rifle's barrel
Substituting appropriately,
326^2 - 0 = 2(a)(0.83)
a = 64,022 m/sec^2
the anwser will be
Substituting this into Equation 1,
F = 0.005(64,022)
F =320.11 Newtons
Hope this helps. </span><span>
</span>
Answer:
C = 1.01
Explanation:
Given that,
Mass, m = 75 kg
The terminal velocity of the mass, 
Area of cross section, 
We need to find the drag coefficient. At terminal velocity, the weight is balanced by the drag on the object. So,
Weight of the object = drag force
R = W
or

Where
is the density of air = 1.225 kg/m³
C is drag coefficient
So,

So, the drag coefficient is 1.01.