Answer:
I2>I1
Explanation:
This problem can be solved by using the parallel axis theorem. If the axis of rotation of a rigid body (with moment of inertia I1 at its center of mass) is changed, then, the new moment of inertia is gven by:

where M is the mass of the object and d is the distance of the new axis to the axis of the center of mass.
It is clear that I2 is greater than I1 by the contribution of the term Md^2.
I2>I1
hope this helps!!
Answer:
(a) Friction force = 50 N
(b) Work done by friction = 300 j
(c) Net work done = 0 j
Explanation:
We have given that the box is pulled by 6 meter so d = 6 m
Force applied on the box F = 60 N
We have have given that velocity is constant so acceleration will be zero
So to applied force will be utilized in balancing the friction force
So friction force 
Work done by friction force 
Work done by applied force 
So net work done = 300-300 = 0 j
Repeat the experiment to make sure it gives the same results.
Hope i helped ; )
Gravity decreases with the square of the distance, so the new force is (20)/(2*2) = 5N.
Answer:
Glucose and Oxygen
Explanation:
Cellular respiration is the process whereby cells derives energy by the use of glucose and oxygen.
Organisms that use cellular respiration to produce their energy are known as heterotophs. They derive the glucose from food materials obtained from plant sources. They use the oxygen from the environment to liberate energy from the glucose obtained from feeding on plant materials.
Cellular respiration can be simply expressed as shown below:
GLUCOSE + OXYGEN → CO₂ + H₂O + ATP
The reactants are glucose and oxygen.
The products are CO₂, water and ATP