Answer:

Explanation:
Let's use Ohm's law:
or
(1)
Where:

We know the value of the voltage V, so we need to find the value of R in order to find I. Fortunately there is a relation between the resistivity of a conductor and its electrical resistance given by:
(2)
Where:

Keep in mind that the electrical resistivity of the gold is a known constant which is
and the cross sectional area of the conductor is calculated as:

Because we have a wire in this case, so we assume a cylindrical geometry.
Now replacing our data in (2)

Finally, we know R and V, so replacing these values in (1) we will be able to find the current:

An image that appears upside down behind the focal point is an image that is reflected on a concave mirror. Mirrors reflect different kinds of images based on the placement of an object that is reflected towards it. There are two kinds of mirrors, concave and a convex mirrors, the latter makes objects seem smaller and farther than where it is exactly.
I try to think of things that calms me down. If that doesn't work, I try to think of things that makes me happy. As I once read in a book, you can never get over your anger but you can calm yourself down by forgetting about it.<span />
Answer:
a) 520m
b) 10.30 s
c) 100,95 m/s
Explanation:
a) According the given information, the rocket suddenly stops when it reach the height of 520m, because the engines fail, and then it begins the free fall.
This means the maximum height this rocket reached before falling was 520 m.
b) As we are dealing with constant acceleration (due gravity)
we can use the following formula:
(1)
Where:
is the initial height of the rocket (at the exact moment in which it stops due engines fail)
is the final height of the rocket (when it finally hits the launch pad)
is the initial velocity of the rocket (at the exact moment in which it stops the velocity is zero and then it begins to fall)
is the acceleration due gravity
is the time it takes to the rocket to hit the launch pad
Clearing
:
(2)
(3)
(4)
(5) This is the time
c) Now we need to find the final velocity
for this rocket, and the following equation will be perfect to find it:
(6)
(7)
(8) This is the final velocity of the rocket. Note the negative sign indicates its direction is downwards (to the launch pad)
That would be the independent variable.
Dependent variable changes according to the independent variable
I honestly don’t know about graphing and stable variables never heard of it before