Answer:
b) q large and m small
Explanation:
q is large and m is small
We'll express it as :
q > m
As we know the formula:
F = Eq
And we also know that :
F = Bqv
F = 
Bqv = 
or Eq = 
Assume that you want a velocity selector that will allow particles of velocity v⃗ to pass straight through without deflection while also providing the best possible velocity resolution. You set the electric and magnetic fields to select the velocity v⃗ . To obtain the best possible velocity resolution (the narrowest distribution of velocities of the transmitted particles) you would want to use particles with q large and m small.
Answer:
17.2 seconds
Explanation:
Given:
v₀ = 0 m/s
a₁ = 10.0 m/s²
t₁ = 3.0 s
a₂ = 16 m/s²
t₂ = 5.0 s
a₃ = -12 m/s²
v₃ = 0 m/s
Find: t
First, find v₁:
v₁ = a₁t₁ + v₀
v₁ = (10.0 m/s²) (3.0 s) + (0 m/s)
v₁ = 30 m/s
Next, find v₂:
v₂ = a₂t₂ + v₁
v₂ = (16 m/s²) (5.0 s) + (30 m/s)
v₂ = 110 m/s
Finally, find t₃:
v₃ = a₃t₃ + v₂
(0 m/s) = (-12 m/s²) t₃ + (110 m/s)
t₃ = 9.2 s
The total time is:
t = t₁ + t₂ + t₃
t = 3.0 s + 5.0 s + 9.2 s
t = 17.2 s
Round as needed.
Explanation:
I think the third one coz it's so good
Answer:
2.92682 m

250000000000 Hz

0.21126 m
0.12244 m
Explanation:
c = Speed of light = 
= Wavelength
f = Frequency
Wavelength is given by

The wavelength is 2.92682 m
Frequency is given by

The frequency is 

The frequency is 250000000000 Hz

The wavelength is 

The wavelength is 0.21126 m

The wavelength is 0.12244 m
B) 14.0 N
The way to solve this problem is to determine the kinetic energy the box had before and after the rough patch of floor. The equation for kinetic energy is:
E = 0.5 M V^2
where
E = Energy
M = Mass
V = velocity
Substituting the known values, let's calculate the before and after energy.
Before:
E = 0.5 M V^2
E = 0.5 13.5kg (2.25 m/s)^2
E = 6.75 kg 5.0625 m^2/s^2
E = 34.17188 kg*m^2/s^2 = 34.17188 joules
After:
E = 0.5 M V^2
E = 0.5 13.5kg (1.2 m/s)^2
E = 6.75 kg 1.44 m^2/s^2
E = 9.72 kg*m^2/s^2 = 9.72 Joules
So the box lost 34.17188 J - 9.72 J = 24.451875 J of energy over a distance of 1.75 meters. Let's calculate the loss per meter by dividing the loss by the distance.
24.451875 J / 1.75 m = 13.9725 J/m = 13.9725 N
Rounding to 1 decimal place gives 14.0 N which matches option "B".