The frequency of a wave is just the reciprocal of the period.For this one . . .
Frequency = 1/(period) = 1/(5 sec) = 0.2 per sec (0.2 Hz) .
You just pointed out that the gravitational force also depends
on the distance from the planet's center. The radius of Uranus
is about 4 times the Earth's radius. That fact alone means that
the gravitational force on the surface is 1/4² = 1/16 its value on
Earth's surface. So increasing the planet's mass by a factor of
14 doesn't compensate for the 1/16 reduction, and the gravitational
force on Uranus is less than on Earth.
One big application is the manufacture and use of mirrors.
Answer:
2.1406 ×
m/sec
Explanation:
we know that energy is always conserved
so from the law of energy conservation

here V is the potential difference
we know that mass of proton = 1.67×
kg
we have given speed =50000m/sec
so potential difference 
now mass of electron =9.11×
so for electron

so the velocity of electron will be 2.1406×
m/sec