The magnitude of the electric field for 60 cm is 6.49 × 10^5 N/C
R(radius of the solid sphere)=(60cm)( 1m /100cm)=0.6m

Since the Gaussian sphere of radius r>R encloses all the charge of the sphere similar to the situation in part (c), we can use Equation (6) to find the magnitude of the electric field:

Substitute numerical values:

The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.
As an example, consider a charged spherical shell S of negligible thickness, with a uniformly distributed charge Q and radius R. We can use Gauss's law to find the magnitude of the resultant electric field E at a distance r from the center of the charged shell. It is immediately apparent that for a spherical Gaussian surface of radius r < R the enclosed charge is zero: hence the net flux is zero and the magnitude of the electric field on the Gaussian surface is also 0 (by letting QA = 0 in Gauss's law, where QA is the charge enclosed by the Gaussian surface).
Learn more about Gaussian sphere here:
brainly.com/question/2004529
#SPJ4
About 5 hours gooood luck
When acceleration is constant, the average velocity is given by

where
and
are the final and initial velocities, respectively. By definition, we also have that the average velocity is given by

where
are the final/initial displacements, and
are the final/initial times, respectively.
Take the car's starting position to be at
. Then

So we have

You also could have first found the acceleration using the equation

then solve for
via

but that would have involved a bit more work, and it turns out we didn't need to know the precise value of
anyway.
We have that the magnitude of the gravitational force is mathematically given as
f=6.377N
<h3>
Force</h3>
Question Parameters:
Earth exerts a 100 N gravitational force on a metal box.
(Mass of the earth is 6e24 kg and radius of the earth is 6.4e6m.)
Generally the equation for the Gravitational mForce is mathematically given as

f=6.377N
For more information on Force visit
brainly.com/question/26115859