Hello!

Use the equation F = m · a (Newton's Second Law) to solve. Substitute in the given values:
F = 5 · 20
F = 100N
Answer:
0.6 m
Explanation:
When a spring is compressed it stores potential energy. This energy is:
Ep = 1/2 * k * x^2
Being x the distance it compressed/stretched.
When the spring bounces the ice cube back it will transfer that energy to the cube, it will raise up the slope, reaching a high point where it will have a speed of zero and a potential energy equal to what the spring gave it.
The potential energy of the ice cube is:
Ep = m * g * h
This is vertical height and is related to the distance up the slope by:
sin(a) = h/d
h = sin(a) * d
Replacing:
Ep = m * g * sin(a) * d
Equating both potential energies:
1/2 * k * x^2 = m * g * sin(a) * d
d = (1/2 * k * x^2) / (m * g * sin(a))
d= (1/2 * 25 * 0.1^2) / (0.05 * 9.81 * sin(25)) = 0.6 m
Compound; consists of atoms of two or more different elements bound together,can be broken down into a simpler type of matter (elements) by chemical means (but not by physical means) has properties that are different from its component elements, and always contains the same ratio of its component atoms.Mixtures; Note that a mixture:consists of two or more different elements and/or compounds physically intermingled, can be separated into its components by physical means, and often retains many of the properties of its components.
Answer:
The correct option is : Their atoms have eight electrons in their valence shells, so noble gases are very unreactive.
Explanation:
The octet rule state that atoms tend to complete their last energy levels with eight electrons, and that this configuration make them very stable and unreactive.
Noble gases are characterized as unreactive atoms, and this is associated with the fact that they have a complete valence shell, it means that they have eight electrons on it (they follow the octet rule).
Atoms with less electrons on their valence shells tend to react with another atom, forming bonds, to complete their valence shells (with eight electrons).