Answer: a) 11.76 m/s b) 7.056 m
Explanation:
The described situation is as follows:
An object is dropped from the top of a tower and when measuring the time it takes to reach the ground that turns out to be 0.02 minutes.
This situation is related to free fall, this also means we have constant acceleration, hence the equations we will use are:
(1)
(2)
Where:
Is the final velocity of the object
Is the initial velocity of the object (it was dropped)
is the acceleration due gravity
is the height of the tower
is the time it takes to the object to reach the ground
b) Begining with (1):
(3)
(4)
(5) This is the final velocity of the object
a) Substituting (5) in (2):
(6)
Clearing
:
(7)
(8) This is the height of the tower
Hey the answer to the question is
m = 0.40
Answer:
636.4 J
Explanation:
The potential energy between one of the charges at the corner of the square and the fifth identical charge is U = kq²/r where q = charge = +50 × 10⁻⁶ C and r = distance from center of square. = √2 m (since the midpoint of the sides = 1 m, so the distance from the charge at the corner to the center is thus √(1² + 1²) = √2)
Since we have four charges, the additional potential energy to move the charge to the centre of the square is U' = 4U = 4kq²/r
U' = 4kq²/r
= 4 × 9 × 10⁹ Nm²/C² (+50 × 10⁻⁶ C)²/√2 m
= 900 Nm²/√2 m
= 636.4 J
Answer:
The particle path will follow
(d) a circular path
Explanation:
When a charged particle having charge of magnitude '
' enters into a magnetic field such that its velocity vector '
' is perpendicular to the direction of the magnetic field '
', then it will experience a force, called Lorentz force (
), given by

As shown in the figure, the magnetic field is directed perpendicular to the plane and towards the plane (as shown by the circle and 'X'-sign) and the velocity vector is from left to right on the plane.
According to the property of cross-product, the Lorentz force (
) acting on the particle will be perpendicular to the instantaneous position of the particle, making the path of the particle to be a circular path,as shown in the figure.