Answer:
6.5 m/s
Explanation:
We are given that
Distance, s=100 m
Initial speed, u=1.4 m/s
Acceleration, 
We have to find the final velocity at the end of the 100.0 m.
We know that

Using the formula






Hence, her final velocity at the end of the 100.0 m=6.5 m/s
Answer:
12.0 meters
Explanation:
Given:
v₀ = 0 m/s
a₁ = 0.281 m/s²
t₁ = 5.44 s
a₂ = 1.43 m/s²
t₂ = 2.42 s
Find: x
First, find the velocity reached at the end of the first acceleration.
v = at + v₀
v = (0.281 m/s²) (5.44 s) + 0 m/s
v = 1.53 m/s
Next, find the position reached at the end of the first acceleration.
x = x₀ + v₀ t + ½ at²
x = 0 m + (0 m/s) (5.44 s) + ½ (0.281 m/s²) (5.44 s)²
x = 4.16 m
Finally, find the position reached at the end of the second acceleration.
x = x₀ + v₀ t + ½ at²
x = 4.16 m + (1.53 m/s) (2.42 s) + ½ (1.43 m/s²) (2.42 s)²
x = 12.0 m
Given Information:
slope angle = θ = 30°
spring constant = k = 30 N/m
compressed length = x = 10 cm = 0.10 m
mass of ice cube = m = 63 g = 0.063 kg
Required Information:
distance traveled by ice cube = d = ?
Answer:
distance traveled by ice cube = 0.48 m
Explanation:
Using the the principle of conversation of energy, the following relation holds true for this case,
mgh = 1/2*kx²
h = 1/2*kx²/mg
Where h is the height of the slope, m is the mass of ice cube, k is the spring constant and x is the compressed length o the spring and g is gravitational acceleration.
h = 1/2*kx²/mg
h = 1/2*30(0.1)²/0.063*9.8
h = 0.242 m
From trigonometry ratio,
sinθ = h/d
d = h/sinθ
d = 0.242/sin(30)
d = 0.48 m
Therefore, when the ice cube is released, it will travel a total distance 0.48 up the slope before reversing direction.
Answer:
58515.9 m/s
Explanation:
We are given that



We have to find the speed (vf).
Work done by surrounding particles=W=0 Therefore, initial energy is equal to final energy.





Using the formula


Where mass of sun=

