1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alona [7]
3 years ago
12

A train travels 90 kilometers in 4 hours, and then 82 kilometers in 1 hours. What is its average speed?

Physics
1 answer:
kvasek [131]3 years ago
5 0
Average speed = total distance / total time.

That's 172 km / 5 hr = 34.4 km//hr
You might be interested in
A section of a parallel-plate air waveguide with a plate separation of 7.11 mm is constructed to be used at 15 GHz as an evanesc
adell [148]

Answer:

the required minimum length of the attenuator is 3.71 cm

Explanation:

Given the data in the question;

we know that;

f_{c_1 = c / 2a

where f is frequency, c is the speed of light in air and a is the plate separation distance.

we know that speed of light c = 3 × 10⁸ m/s = 3 × 10¹⁰ cm/s

plate separation distance a = 7.11 mm = 0.0711 cm

so we substitute

f_{c_1 = 3 × 10¹⁰ / 2( 0.0711  )

f_{c_1 = 3 × 10¹⁰ cm/s / 0.1422  cm

f_{c_1 =  21.1 GHz which is larger than 15 GHz { TEM mode is only propagated along the wavelength }

Now, we determine the minimum wavelength required

Each non propagating mode is attenuated by at least 100 dB at 15 GHz

so

Attenuation constant TE₁ and TM₁ expression is;

∝₁ = 2πf/c × √( (f_{c_1 / f)² - 1 )

so we substitute

∝₁ = ((2π × 15)/3 × 10⁸ m/s) × √( (21.1 / 15)² - 1 )

∝₁ = 3.1079 × 10⁻⁷

∝₁ = 310.79 np/m

Now, To find the minimum wavelength, lets consider the design constraint;

20log₁₀e^{-\alpha _1l_{min = -100dB

we substitute

20log₁₀e^{-(310.7np/m)l_{min = -100dB

l_{min = 3.71 cm

Therefore, the required minimum length of the attenuator is 3.71 cm

6 0
3 years ago
On a distant planet, the GPE of a 65 kg astronaut is 11,115 j when they are on a 46 m tall cliff. What is the acceleration due t
Ainat [17]

Answer:Learn what gravitational potential energy means and how to calculate it. ... a pulley and rope, so the force due to lifting the box and the force due to gravity, ... would be used by an elevator lifting a 75 kg person through a height of 50 m if the ... When you are close to a planet you are effectively bound to the planet by gravity ..

Explanation:

3 0
3 years ago
What kind of EM waves are most dangerous to humans​
zhuklara [117]

The most dangerous frequencies of electromagnetic energy are X-rays, gamma rays, ultraviolet light and microwaves. X-rays, gamma rays and UV light can damage living tissues, and microwaves can cook them. Hope this helps! =^-^=

4 0
3 years ago
A car accelerates from rest at 3.6 m/s 2 . How much time does it need to attain a speed of 5 m/s?
Olenka [21]

car starts from rest

v_i = 0

final speed attained by the car is

v_f = 5 m/s

acceleration of the car will be

a = 3.6 m/s^2

now the time to reach this final speed will be

t = \frac{v_f - v_i}{a}

t = \frac{5 - 0}{3.6}

t = 1.39 s

so it required 1.39 s to reach this final speed

6 0
3 years ago
A train pulls away from a station with a constant acceleration of 0.42 m/s2. A passenger arrives at a point next to the track 6.
Rina8888 [55]

Answer:

2.69 m/s

Explanation:

Hi!

First lets find the position of the train as a function of time as seen by the passenger when he arrives to the train station. For this state, the train is at a position x0 given by:

x0 = (1/2)(0.42m/s^2)*(6.4s)^2 = 8.6016 m

So, the position as a function of time is:

xT(t)=(1/2)(0.42m/s^2)t^2 + x0 = (1/2)(0.42m/s^2)t^2 + 8.6016 m

Now, if the passanger is moving at a constant velocity of V, his position as a fucntion of time is given by:

xP(t)=V*t

In order for the passenger to catch the train

xP(t)=xT(t)

(1/2)(0.42m/s^2)t^2 + 8.6016 m = V*t

To solve this equation for t we make use of the quadratic formula, which has real solutions whenever its determinat is grater than zero:

0≤ b^2-4*a*c = V^2 - 4 * ((1/2)(0.42m/s^2)) * 8.6016 m =V^2 - 7.22534(m/s)^2

This equation give us the minimum velocity the passenger must have in order to catch the train:

V^2 - 7.22534(m/s)^2 = 0

V^2 = 7.22534(m/s)^2

V = 2.6879 m/s

4 0
3 years ago
Other questions:
  • If the amplitude of a sound increases, which statement is true
    14·2 answers
  • What is the changing of the position of an object relative to a point of reference
    10·1 answer
  • If you double the velocity of an object, you increase its kinetic energy by a factor of what ?
    10·1 answer
  • 5N of force is applied to move a large nail a distance of 10 cm from an electromagnet on a frictionless table. The nail is then
    15·1 answer
  • A circular wire loop of radius 12.1 cm carries a current of 2.16 A. It is placed so that the normal to its plane makes an angle
    9·1 answer
  • Which is the most closely related to the color of an acid-base indicator when dipped into solution?
    6·2 answers
  • Please help me to fix this sentence to sentence with more delivery and fluency
    9·2 answers
  • Shearing of the wool is done with special instruments called_____​
    5·2 answers
  • A merry-go-round rotates at the rate of 0.17 rev/s with an 79 kg man standing at a point 1.6 m from the axis of rotation.
    13·1 answer
  • What fitness components can impact a soccer players performance?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!