Answer:
v = √ 2 G M/
Explanation:
To find the escape velocity we can use the concept of mechanical energy, where the initial point is the surface of the earth and the end point is at the maximum distance from the projectile to the Earth.
Initial
Em₀ = K + U₀
Final
= 
The kinetic energy is k = ½ m v²
The gravitational potential energy is U = - G m M / r
r is the distance measured from the center of the Earth
How energy is conserved
Em₀ = 
½ mv² - GmM /
= -GmM / r
v² = 2 G M (1 /
– 1 / r)
v = √ 2GM (1 /
– 1 / r)
The escape velocity is that necessary to take the rocket to an infinite distance (r = ∞), whereby 1 /∞ = 0
v = √ 2GM /
Power = work/time
= 500/10
= 50J/s or 50 watt
Answer:
5m/8
Explanation:
Function T gives the time the Hobbits have to prepare for the attack, T(k), in minutes, as a function of troll's distance, k, in meters.
Function V gives visibility from the watchtower, V(m), in meters, as a function of the height of the watchtower, m, in meters.
Therefore, T(V(m)) will give the time the Hobbits have to prepare for the troll attack as a function of the height, m, of the watchtower.
We can input m into function V to obtain the visibility from watchtower, V(m), in meters. Since visibility indicates the distance you can see, this also gives the distance of the trolls. This can then be input into function T to obtain the time that the Hobbits have to prepare for a troll attack.
Let's find T(V(m)) by substituting the formula for V(m) into function T as shown below.
T(V(M))=T(50m)
=50m/80
We can simplify this as follows:
=50m/80
=5m/8
Mass/volume is the formulae
B. Amplitude
It is the maximum distance from the equilibrium point of the pendulum.