Answer:
You could use newton’s second law to calculate the force applied to an object if you knew the objects mass and its <u>acceleration.</u>
Explanation:
By, Newtons second law, the force applied on an object directly varies with the acceleration caused and the mass of the object.
This is given by :

Where
represents force applied on the object ,
represents mass of the object and
represents the acceleration.
In order to calculate force applied on object we require the mass of the object and its acceleration. The force can be calculated by finding the product of mass and acceleration of the object.
Answer:
C
Explanation:
light can travel in a vacuum Anne the sped varies
It is based on atomic number, which is the number of protons in the nuclei of the atoms of an element.
Answer:
Explanation:
a )
While breaking initial velocity u = 62.5 mph
= 62.5 x 1760 x 3 / (60 x 60 ) ft /s
= 91.66 ft / s
distance trvelled s = 150 ft
v² = u² - 2as
0 = 91.66² - 2 a x 150
a = - 28 ft / s²
b ) While accelerating initial velocity u = 0
distance travelled s = .24 mi
time = 19.3 s
s = ut + 1/2 at²
s is distance travelled in time t with acceleration a ,
.24 = 0 + 1/2 a x 19.3²
a = .001288 mi/s²
= 2.06 m /s²
c )
If distance travelled s = .25 mi
final velocity v = ? a = .001288 mi / s²
v² = u² + 2as
= 0 + 2 x .001288 x .25
= .000644
v = .025 mi / s
= .0025 x 60 x 60 mi / h
= 91.35 mph .
d ) initial velocity u = 59 mph
= 86.53 ft / s
final velocity = 0
acceleration = - 28 ft /s²
v = u - at
0 = 86.53 - 28 t
t = 3 sec approx .