Answer:
D=387.28m
Explanation:
At the moment where the toss is made
, so we need both equations:
For the red car:
With initial speed of 0 and acceleration of 6.12m/s^2.
For the green car:
With
and Xo = 200m
Since both positions will be the same:
Solving for t:
t1 = -5.8s and t1 =11.25s
Replacing t = 11.25 on either equation to find the displacement:

The answer would be:
D.
X: Low potential energy
Y: High Potential energy
Z: Flow of electrons
Z is clearly the flow of electrons, as shown by the arrow demonstrating the direction of the flow. So you can easily cross out choices B and C. Now, you can see that Y has more energy stored and X has a lot less, so you can conclude that Y has high potential energy while X has low potential energy.
Answer:
Force applied
Explanation:
An object will remain at its state of rest unless a non zero for act on it
1 Days to Seconds = 86400 70 Days to Seconds = 6048000
2 Days to Seconds = 172800 80 Days to Seconds = 6912000
3 Days to Seconds = 259200 90 Days to Seconds = 7776000
4 Days to Seconds = 345600 100 Days to Seconds = 8640000
Answer:
magnification is - 159
objective distance is 3.85 cm
Explanation:
Given data
focal length f1 = 1.40 cm
focal length f2 = 2.20 cm
separated d = 19.6 cm
to find out
angular magnification and How far from the objective
solution
we know magnification formula that is
magnification = ( - L / f1 ) (D/f2)
here D = 25 cm put all value
magnification = ( - 19.6 / 1.40 ) (25/2.20)
magnification = - 159
and
now we apply lens formula
i/f = 1/q + 1/p
p = f2 = 2.20
so
q = f2 p / p -f2
q = 1.4(2.20) / ( 2.2 - 1.4 )
q = 3.85 cm
so objective distance is 3.85 cm