Yes because if they are further away it makes it hard for them to attract each other
<span>when it returns to its original level after encountering air resistance, its kinetic energy is
decreased.
In fact, part of the energy has been dissipated due to the air resistance.
The mechanical energy of the ball as it starts the motion is:
</span>

<span>where K is the kinetic energy, and where there is no potential energy since we use the initial height of the ball as reference level.
If there is no air resistance, this total energy is conserved, therefore when the ball returns to its original height, the kinetic energy will still be 100 J. However, because of the presence of the air resistance, the total mechanical energy is not conserved, and part of the total energy of the ball has been dissipated through the air. Therefore, when the ball returns to its original level, the kinetic energy will be less than 100 J.</span>
Option number three is correct energy can be transformed and moved and released but it can't be destroyed and doesn't disappear.
The velocity of the boat after the package is thrown is 0.36 m/s.
<h3>
Final velocity of the boat</h3>
Apply the principle of conservation of linear momentum;
Pi = Pf
where;
- Pi is initial momentum
- Pf is final momentum
v(74 + 135) = 15 x 5
v(209) = 75
v = 75/209
v = 0.36 m/s
Thus, the velocity of the boat after the package is thrown is 0.36 m/s.
Learn more about velocity here: brainly.com/question/6504879
#SPJ1
The net force required to accelerate a car is 6000 N.
Force is defined as the product of the mass and acceleration of the body. Force is used to changing the velocity that is to accelerate an object or a body of a particular mass. The unit of Force is Newton or kg m/s^2.
The formula used to calculate the net force is :
F = ma
where, F = Force
m = mass = 2000 kg
a = acceleration = 3.00 m/s^2
∴ F = 2000*3
F = 6000 N
Thus, to accelerate the car at 3.00 m/s^2 of mass 2000 kg net force required is 6000 N.
To learn more about force,
brainly.com/question/1046166