The correct answer is B. balance
Answer : The equilibrium concentration of
in the solution is, 
Explanation :
The dissociation of acid reaction is:

Initial conc. c 0 0
At eqm. c-x x x
Given:
c = 

The expression of dissociation constant of acid is:
![K_a=\frac{[H_3O^+][C_6H_5COO^-]}{[C_6H_5COOH]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BC_6H_5COO%5E-%5D%7D%7B%5BC_6H_5COOH%5D%7D)

Now put all the given values in this expression, we get:
![6.3\times 10^{-5}=\frac{(x)\times (x)}{[(7.0\times 10^{-2})-x]}](https://tex.z-dn.net/?f=6.3%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7B%28x%29%5Ctimes%20%28x%29%7D%7B%5B%287.0%5Ctimes%2010%5E%7B-2%7D%29-x%5D%7D)

Thus, the equilibrium concentration of
in the solution is, 
Answer:
cholesterol
Explanation:
gsdhudbdjbfmcjfjdncbdhdnhdndbchdncbdn f f ff
The balanced chemical equation of the reaction described above is,
C2H6O + O2 --> H2O + C2H4O2
If we have 3.84 g of oxygen, we divide by its molar mass.
n = (3.54 g Oxygen gas) x (1 mole O2/ 32 g O2)
n = 0.11 moles O2
Using ratio and proportion,
number of moles of ethanol = (0.11 moles O2) x (1 mole C2H6)
= 0.11 moles C2H6
Then, we multiply the calculated value to its molar mass, 46 grams /mol.
mass of ethanol = (0.11 mol) x (46 grams / mol)
= <em>5.06 grams</em>