Answer:
a. increase
Explanation:
Based on the kinetic molecular theory of gases, the average kinetic energy of the system will increase.
- The average kinetic energy is heat
- If temperature increases, heat of a system will also rise.
- According the kinetic molecular theory "the temperature of the gas is a measure of the average kinetic energy of the molecules"
Therefore, due to the increase in temperature, the average kinetic energy of the system increases.
First, is to solve the molar mass of the herbicide, with a formula
<span>C3H8NO5P
C3 = 12 ( 3 ) = 36
H8 = 1 ( 8 ) = 8
N = 14
O5 = 16 ( 5 ) = 80
P = 31
so in total the molar mass of </span><span>C3H8NO5P is 36 + 8 + 14 + 80 + 31 = 169 g/mol
number of moles = 783.5 g ( 1 mol / 169 g)
number of moles = 4.64 mol </span><span>C3H8NO5P</span>
Answer: B. They reproduce slower than unicellular organisms
Explanation:
In unicellular organisms there is a single cell which performs all the functions like digestion, respiration, and reproduction. The cell reproduce by cell division. The single parent cell divides into two identical daughter cells. But multicellular organisms exhibit multiple cells and their reproduction is complex. They reproduce by sexual mode of reproduction in which separate sex cells are produced when they fuse form zygote which is the precursor of new organism. This process is slower than that of the cell division and production of progeny by the unicellular organisms. Thus reproduction is slower in multicellular organism this is the disadvantage in multicellular organisms.
It can absorb thermal energy without a large change in temperature.
Answer:
b. First determine the mass of the sample and then convert it to the number of atoms using Avogadro's number and the molar mass of the element.
Explanation:
a. First determine the mass of the sample and then convert it to the number of atoms using the molar mass of the element. <em>FALSE. </em>As the mass is in grams and molar mass is in g/mol. This result in the moles of each element, not its number of atoms.
b. First determine the mass of the sample and then convert it to the number of atoms using Avogadro's number and the molar mass of the element. <em>TRUE. </em>Mass and molar mass will result in moles of element. These moles could be converted in number of atoms using Avogadro's number that is in # atoms per mole.
c.Use atomic microscope to determine Avogadro's number, then determine the mass of the sample and convert it to the number of atoms. <em>FALSE. </em>An atomic microscope is not used to determine Avogadro's number.
d.Use atomic microscope to count each atom. <em>FALSE. </em>There is not possible to count every single atom in an element. There are more atoms in a drop of water than stars in the sky.
I hope it helps!