Answer:
4.78 %.
Explanation:
<em>mass percent is the ratio of the mass of the solute to the mass of the solution multiplied by 100.</em>
<em></em>
<em>mass % = (mass of solute/mass of solution) x 100.</em>
<em></em>
mass of MgSO₄ = 50.0 g,
mass of water = d.V = (0.997 g/mL)(1000.0 mL) = 997.0 g.
mass of the solution = mass of water + mass of MgSO₄ = 997.0 g + 50.0 g = 1047.0 g.
<em>∴ mass % = (mass of solute/mass of solution) x 100</em> = (50.0 g/1047.0 g) x 100 = <em>4.776 % ≅ 4.78 %.</em>
Mole ratio for the reaction is 1:1
no of moles in NaOH that reacted= 1*21.17/1000=0.02117mols
molarity of HCl=0.02117*10/1000
=2.117M
<span>we know that each
element has an unique spectra and it can be used to identify the
element. it shows that the energy levels of the electrons and different colors are the result of different wavelengths.
hope it helps
</span>
Answer is: a. Rubidium (Rb) is more reactive than strontium (Sr) because strontium atoms must lose more electrons.
The ionization energy (Ei) is the minimum amount of energy required to remove the valence electron, when element lose electrons, oxidation number of element grows (oxidation process).
Alkaline metals (group 1), in this example rubidium, have lowest ionizations energy and easy remove valence electrons (one electron), they are most reactive metals.
Earth alkaline metals (group 2), in this example strontium, have higher ionization energy than alkaline metals, because they have two valence electrons, they are less reactive.
Rubidium electron configuration: ₃₇Rb 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶5s¹; one valence electron is 5s¹ orbital.
Strontium electron configuration: ₃₈Sr 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶5s²; two valence electrons is 5s² orbital.