Answer:
MgO + H₂
Explanation:
The products of reaction is MgO and hydrogen gas.
This is a single displacement reaction.
In this reaction, the possibility of the reaction is determined by position of the atoms on the activity series.
Mg is higher than H on the activity series, so it is more reactive and it then displaces the hydrogen in water;
Mg + H₂O → MgO + H₂
The energy that an object has is moving
Answer:
[EtOH] = 2.2M and Wt% EtOH = 10.1% (w/w)
Explanation:
1. Molarity = moles solute / Volume solution in Liters
=> moles solute = mass solute / formula weight of solute = 9.8g/46g·mol⁻¹ = 0.213mol EtOH
=> volume of solution (assuming density of final solution is 1.0g/ml) ...
volume solution = 9.81gEtOH + 87.5gH₂O = 97.31g solution x 1g/ml = 97.31ml = 0.09731 Liter solution
Concentration (Molarity) = moles/Liters = 0.213mol/0.09731L = 2.2M in EtOH
2. Weight Percent EtOH in solution (assuming density of final solution is 1.0g/ml)
From part 1 => [EtOH] = 2.2M in EtOH = 2.2moles EtOH/1.0L soln
= {(2.2mol)(46g/mol)]/1000g soln] x 100% = 10.1% (w/w) in EtOH.
From the calculation, the molar mass of the solution is 141 g/mol.
<h3>What is the molar mass?</h3>
We know that;
ΔT = K m i
K = the freezing constant
m = molality of the solution
i = the Van't Hoft factor
The molality of the solution is obtained from;
m = ΔT/K i
m = 3.89/5.12 * 1
m = 0.76 m
Now;
0.76 = 26.7 /MM/0.250
0.76 = 26.7 /0.250MM
0.76 * 0.250MM = 26.7
MM= 26.7/0.76 * 0.250
MM = 141 g/mol
Learn more about molar mass:brainly.com/question/12127540?
#SPJ12
Answer:
the difference is tyat eruptions of less gassy and more gassy is that the less gassy doesnt retain as much gas as the more gassy one and thus the eruption of the less gassy is less damage to the more gassy