1) Balanced chemical equation
H2SO4 + 2NaOH ---> Na2 SO4 + 2H2O
=> 1 mol H2SO4 : 2 moles NaOH
2) Convert 89.3 g of H2SO4 and 96.0 g of NaOH to moles
Molar mass of H2SO4 = 98.1 g/mol
Molar mass of NaOH = 40.0 g/mol
moles = mass in grams / molar mass
moles H2SO4 = 89.3 g / 98.1 g/mol = 0.910 mol
moles NaOH = 96.0 g / 40.0 g/mol = 2.40 mol
3) Theoretical molar ratio = 2 moles NaOH / 1 mol H2SO4
So, all the 0.91 mol of H2SO4 will be consumed along with 1.820 (2*0.91) moles of NaOH, and 0.580 moles (2.40 - 1.82) of NaOH will be left over by the chemical reaction.
4) Convert 0.580 moles NaOH to mass
0.580 moles * 40.0 g/mol = 23.2 g of NaOH will be left over
Covalent bonding is the sharing of electrons between atoms. This bonding occurs primarily between nonmetals. <span>If atoms have similar electronegativities (the same affinity for electrons), covalent bonds are most likely to occur. Because both atoms have the same affinity for electrons and neither has a tendency to donate them, they share electrons in order to achieve octet configuration and become more stable. </span>
Answer:
the entropy change for the surroundings when 1.68 moles of Fe2O3(s) react at standard conditions = 49.73 J/K.
Explanation:
3Fe2O3(s) + H2(g)-----------2Fe3O4(s) + H2O(g)
∆S°rxn = n x sum of ∆S° products - n x sum of ∆S° reactants
∆S°rxn = [2x∆S°Fe3O4(s) + ∆S°H2O(g)] - [3x∆S°Fe2O3(s) + ∆S°H2(g)]
∆S°rxn = [(2x146.44)+(188.72)] - [(3x87.40)+(130.59)] J/K
∆S°rxn = (481.6 - 392.79) J/K =88.81J/K.
For 3 moles of Fe2O3 react, ∆S° =88.81 J/K,
then for 1.68 moles Fe2O3 react, ∆S° = (1.68 mol x 88.81 J/K)/(3 mol) = 49.73 J/K the entropy change for the surroundings when 1.68 moles of Fe2O3(s) react at standard conditions.
Dependent variable. the independent is non dependent of the variable.