Answer:
There isn't any picture for me to see
have a good day :)
Explanation:
Answer:
Diamagnetism in atom occurs whenever two electrons in an orbital paired equalises with a total spin of 0.
Paramagnetism in atom occurs whenever at least one orbital of an atom has a net spin of electron. That is a paramagnetic electron is just an unpaired electron in the atom.
Here is a twist even if an atom have ten diamagnetic electrons, the presence of at least one paramagnetic electron, makes it to be considered as a paramagnetic atom.
Simply put paramagnetic elements are one that have unpaired electrons, whereas diamagnetic elements do have paired electron.
The atomic orbital and radius increases by gaining electron linearly so even electron numbered atoms are diamagnetic while the odd electron numbered atoms are paramagnetic.
Running through the first 18 elements one can observe that there is an alternative odd number of electrons and an even number proofing that that half of the first 18 elements shows paramagnetism and diamagnetism respectively.
Explanation:
Answer: stepper mother is good for that
Explanation:
Se - 78
Selenium - 78
or
78/34 Se2-
Answer:
The balanced equations for those dissociations are:
Ba(OH)₂(aq) → Ba²⁺(aq) + 2OH⁻ (aq)
H₂SO₄ (aq) → 2H⁺(aq) + SO₄⁻²(aq)
Explanation:
As a strong base, the barium hidroxide gives OH⁻ to the solution
As a strong acid, the sulfuric acid gives H⁺ to the solution
Ba(OH)₂, is a strong base so the dissociation is complete.
H₂SO₄ is considerd a strong acid, but only the first deprotonation is strong.
The second proton that is released, has a weak dissociation.
H₂SO₄ (aq) → H⁺(aq) + HSO₄⁻(aq)
HSO₄⁻(aq) ⇄ H⁺ (aq) + SO₄⁻² (aq) Ka