Answer:
If it served you, give me 5 stars please, thank you!
<h3><u>c) 13.29 mL</u></h3>
The radius of the cation is much smaller than the corresponding neutral atom.(b) The radius of an anion is much larger than the corresponding neutral atom.Explanation:The size of the atom or ion is inversely proportional to the nuclear charge experienced by the electrons.(a)The size of the cation is smaller than the size of the corresponding neutral atom. This is because after removal of an electron from the highest principle energy level the nuclear charge experienced by the valence electrons increases resulting in the decrease in size.(b)The size of an anion is larger than the size of the corresponding neutral atom. In an anion, an extra electron is added to the highest principle energy level but the effective nuclear charge pulling the electrons towards the nucleus is still same. The net effective nuclear charge experienced by the electrons present in the outermost shell decrease. Moreover, due to the added electron, the repulsion between the electrons also increases resulting in the increase in size
Make since? i hope this helps
Answer: 27.09 ppm and 0.003 %.
First, <u>for air pollutants, ppm refers to parts of steam or gas per million parts of contaminated air, which can be expressed as cm³ / m³. </u>Therefore, we must find the volume of CO that represents 35 mg of this gas at a temperature of -30 ° C and a pressure of 0.92 atm.
Note: we consider 35 mg since this is the acceptable hourly average concentration of CO per cubic meter m³ of contaminated air established in the "National Ambient Air Quality Objectives". The volume of these 35 mg of gas will change according to the atmospheric conditions in which they are.
So, according to the <em>law of ideal gases,</em>
PV = nRT
where P, V, n and T are the pressure, volume, moles and temperature of the gas in question while R is the constant gas (0.082057 atm L / mol K)
The moles of CO will be,
n = 35 mg x
x
→ n = 0.00125 mol
We clear V from the equation and substitute P = 0.92 atm and
T = -30 ° C + 273.15 K = 243.15 K
V = 
→ V = 0.0271 L
As 1000 cm³ = 1 L then,
V = 0.0271 L x
= 27.09 cm³
<u>Then the acceptable concentration </u><u>c</u><u> of CO in ppm is,</u>
c = 27 cm³ / m³ = 27 ppm
<u>To express this concentration in percent by volume </u>we must consider that 1 000 000 cm³ = 1 m³ to convert 27.09 cm³ in m³ and multiply the result by 100%:
c = 27.09
x
x 100%
c = 0.003 %
So, <u>the acceptable concentration of CO if the temperature is -30 °C and pressure is 0.92 atm in ppm and as a percent by volume is </u>27.09 ppm and 0.003 %.
The empirical formula is XeO₃.
<u>Explanation:</u>
Assume 100 g of the compound is present. This changes the percents to grams:
Given mass in g:
Xenon = 73.23 g
Oxygen = 26.77 g
We have to convert it to moles.
Xe = 73.23/
131.293 = 0.56 moles
O = 26.77/ 16 = 1.67 moles
Divide by the lowest value, seeking the smallest whole-number ratio:
Xe = 0.56/ 0.56 = 1
O = 1.67/ 0.56 = 2.9 ≈3
So the empirical formula is XeO₃.