Answer:
The answer would be C. Number of protons in the atom.
Explanation:
On the periodic table, you see the element, with a big number at top, and a small number below the element name/abbreviation.
The big number is the amount of protons of the atom, which define each atom. The smaller number represents the atomic mass of the atom.
#teamtrees #WAP (Water And Plant)
The total number of neutrons in the nucleus of a k-37 atom is 18 neutrons.
Hope this helps ;)
Δt=

This because ε = dΦ/dt, and emf is a voltage so it can also be written as dΦ/dt = IR
Because ΔΦ= ABcosθ for each of the N loops and cosθ is just 1 here only A needs to be replaced, and it can be replaced with A=πr^2, which makes that part of the equation ΔΦ_m=N*B0*πa^2
An ideal gas is cooled at constant pressure, option A. A. ΔH is less than (more negative) Δ E of the system.
∆H is the exchange in enthalpy from reactants to products A ΔHº charge represents an addition of electricity from the reaction and from the surroundings, resulting in an endothermic response. A horrible cost for ΔHº represents the removal of power from the reaction and into the surroundings and so the reaction is exothermic.
The enthalpy of a system can not be measured right away because of the fact the inner energy consists of additives that are unknown, now not effects available, or aren't of interest in thermodynamics.
Hence, the answer is option A.
Learn more about ideal gas here:-brainly.com/question/20348074
#SPJ4
Disclaimer:- your question is incomplete, please see below for the complete question.
A solid yields a mixture of gases in an exothermic reaction that takes place in a container of variable volume.
A. ΔH is less than (more negative) Δ E of the system.
B. ΔH is greater than ΔE of the system.
C. ΔH is equal to ΔE of the system.
D. can't be determined without more information