The total resistance is 420 ohm.
A circuit with resistive elements of 220, 100, 57, and 43 produce what total resistance
R= 220+ 100+ 57+ 43
= 420 Ω
What is resistance and its types?
Resistance is a measure of the opposition to current flow in an electrical circuit also known as ohmic resistance or electrical resistance. Ohms are measured as resistance, symbolized by the Greek letter omega (Ω). The ratio of the applied voltage to the current through the material is then known as resistance.
What causes resistance?
An electric current flows when electrons move through a conductor, such as a metal wire. The moving electrons can collide with the ions in the metal. This makes it more difficult for the current to flow, and causes resistance.
Learn more about resistance:
brainly.com/question/17563681
#SPJ4
Answer:
m=ρV
V=4/3 * pi * r3
V=1.3 * 3.14 * 3.9^3
V=242.14 cm^3
m=7.58 * 242.14
m=1.8 kG
Explanation:
1. We calculate volume for sphere.
2. Then we calculate mass of sphere.
As altitude increases, temperature increases.
The stratosphere is the part of the atmosphere that starts in the tropopause and ends in the estratopause. In the troposphere, the air is close to the Earth surface. The air surface can absorb more sunlight energy than the air, so the Earth surface heats the air. As you go higher, the distance to the Earth surface is higher, so the temperature is lower. The troposphere ends in the tropopause, where this trend changes. In the estratopause, there is a lot of ozone, which absorbs the dangerous UV radiation and converts into heat. That heat warms the air. So the air which is close to the estratopause is warm because of the heat released by the ozone reactions. The tropopause is far from the Earth surface and far from the ozone layer, that’s why it is cold. So the tropopause is cold and the estratopause is warm, which means: the air becomes warmer <span>as you rise above the tropopause until you get to the estratopause.</span>
I'll be happy to solve the problem using the information that
you gave in the question, but I have to tell you that this wave
is not infrared light.
If it was a wave of infrared, then its speed would be close
to 300,000,000 m/s, not 6 m/s, and its wavelength would be
less than 0.001 meter, not 12 meters.
For the wave you described . . .
Frequency = (speed) / (wavelength)
= (6 m/s) / (12 m)
= 0.5 / sec
= 0.5 Hz .
(If it were an infrared wave, then its frequency would be
greater than 300,000,000,000 Hz.)