Answer:


Explanation:
Here mass density of rod is varying so we have to use the concept of integration to find mass and location of center of mass.
At any distance x from point A mass density


Lets take element mass at distance x
dm =λ dx
mass moment of inertia

So total moment of inertia

By putting the values

By integrating above we can find that

Now to find location of center mass


Now by integrating the above


So mass moment of inertia
and location of center of mass 
Answer:
16.33°C
Explanation:
Applying,
Heat lost by copper = heat gained by water
cm(t₁-t₃) = c'm'(t₃-t₂).............. Equation 1
Where c = specific heat capacity of copper, m = mass of copper, c' = specific heat capacity of water, m' = mass of water, t₁ = initial temperature of copper, t₂ = initial temperature of water, t₃ = final equilibrium temperature.
From the question,
Given: m = 50 kg, t₁ = 140°C, m' = 90 L = 90 kg, t₂ = 10°C
Constant: c = 385 J/kg°C, c' = 4200J/kg°C
Substitute these values into equation 1
50(385)(140-t₃) = 90(4200)(t₃-10)
(140-t₃) = 378000(t₃-10)/19250
(140-t₃) = 19.64(t₃-10)
140-t₃ = 19.64t₃-196.6
19.64t₃+t₃ = 196.4+140
20.64t₃ = 336,4
t₃ = 336.4/20.6
t₃ = 16.33°C
Answer:For this equation you would have to take the numerator and multiply with the other one, which would leave you with 24/80 and if you want the simplified version it would be 3/10, hope this helps! :)
Explanation:
Answer:The bones of teh linnear eat moving the eardrum
Explanation:
The boiling pot of water is completely open