If iodine is added to a starch solution, they react with each other and the iodine darkens to an almost pitch black.
however, if iodine is added to a solution containing no starch, it will show up only as an extremely pale brown. almost colorless and hardly visible.
when following the changes in some inorganic oxidation reduction reactions, iodine may be used as an indicator to follow the changes of iodide ion and iodine element. soluble starch solution is added. only iodine element in the presence of iodide ion will give the characteristic blue black color. neither iodine element alone nor iodide ions alone will give the color result.
hope this answer really helps your question :)
Answer:
(a) v = 5.42m/s
(b) vo = 4.64m/s
(c) a = 2874.28m/s^2
(d) Δy = 5.11*10^-3m
Explanation:
(a) The velocity of the ball before it hits the floor is given by:
(1)
g: gravitational acceleration = 9.8m/s^2
h: height where the ball falls down = 1.50m

The speed of the ball is 5.42m/s
(b) To calculate the velocity of the ball, after it leaves the floor, you use the information of the maximum height reached by the ball after it leaves the floor.
You use the following formula:
(2)
vo: velocity of the ball where it starts its motion upward
You solve for vo and replace the values of the parameters:

The velocity of the ball is 4.64m/s
(c) The acceleration is given by:


The acceleration of the ball is 2874.28/s^2
(d) The compression of the ball is:

THe compression of the ball when it strikes the floor is 5.11*10^-3m
Hope this helps :)
When describing linear motion, you need only one graph representing each of the three terms, while projectile motion requires a graph of the x and y axes. Graphs of simple harmonic motion are sine curves. Circular motion is different from other forms of motion because the speed of the object is constant.
Answer:
The object will rotate with constant angular acceleration
Explanation:
According to the Newton's Second Law for Whenever there is more than one torque acting on a rigid body that posses fixed axis, the moment of inertia as well as the angular acceleration is equals or proportional to the summation of the torques. It gives details on the relationship between rotational kinematics and torque as well as moment of inertia. This can be represented by the below equation.
∑iτi=Iα.
.Therefore when constant net torque is applied to object that is rotating, the object will rotate with constant angular acceleration