Answer:
option (b) 4900 N
Explanation:
m = 2000 kg, R = 6380 km = 6380 x 10^3 m, Me = 5.98 x 10^24 kg, h = R
F = G Me x m / (R + h)^2
F = G Me x m / 2R^2
F = 6.67 x 10^-11 x 5.98 x 10^24 x 2000 / (2 x 6380 x 10^3)^2
F = 4900 N
The speed of the ball moving is

what is momentum?
The momentum p of a classical object of mass m and velocity v is given by pclassical =mv.
For photons with wavelength λ,this equation does not hold.Instead, the momentum of the Photon is given by p Photon = h/λ
where,h is the planck's constant.
The momentum of the red Photon is
given:




since,the Photon and the ping-pong ball have the same momentum,we have



Therefore, if the red photon and the ping-pong ball have the same momentum, the ping-pong ball must have a speed of approximately

learn more about momentum of photon from here: brainly.com/question/28197406
#SPJ4
Answer:
No you can't cuz,if you put water instead of clock oil in Millikan oil drop your experiment will fail and it won't turn out the way you wanted it to be
7) PE= Fwh = (72 m) (966 N) = 69552 Joules 7
8) zero PE=mass*g*height
I hope it’s correct
As an object falls from rest, its gravitational energy is converted to kinetic energy
G.P.E = K.E = mgh
K.E = (80 Kg)(9.8 m/s²)(30 m)
K.E. = 23,520 J