To solve this problem it is necessary to apply the concepts related to Normal Force, frictional force, kinematic equations of motion and Newton's second law.
From the kinematic equations of motion we know that the relationship of acceleration, velocity and distance is given by

Where,
Final velocity
Initial Velocity
a = Acceleration
x = Displacement
Acceleration can be expressed in terms of the drag coefficient by means of
Frictional Force
Force by Newton's second Law
Where,
m = mass
a= acceleration
Kinetic frictional coefficient
g = Gravity
Equating both equation we have that



Therefore,


Re-arrange to find x,

The distance traveled by the car depends on the coefficient of kinetic friction, acceleration due to gravity and initial velocity, therefore the three cars will stop at the same distance.
When an atom becomes electrically charged the number of electrons or protons stops and they are not equal again. The "extra" electron or proton is not balanced by something inside the atom any longer and it starts attracting itself to othet protons or electrons in other atoms.
<h3>What is atomic structure?</h3>
An atomic structure comprises of positively charged nucleus which is surrounded by negatively charged particles called electron and neutron which is neutral charged.
Unlike charges attract each other while like charges repel each other.
Therefore, When an electron is fully charged, the number of electrons will stop to be unequal again.
Learn more about Atomic charge here.
brainly.com/question/18102056
answer
so unit of velocity is m/s
displacement=600m
5minutes should be converted to seconds
5×60=300 seconds
so,
velocity= displacement÷time
= 600m ÷300s
=2m/s or 2ms^-1
Current flow depends on other things in addition to the circuit configuration.
If the SAME voltage is applied to some arrangement of the SAME components, the greatest current will occur when they are all in parallel.