Answer: (Structure attached).
Explanation:
This type of reaction is an aromatic electrophilic substitution. The overall reaction is the replacement of a proton (H +) with an electrophile (E +) in the aromatic ring.
The aromatic ring in p-fluoroanisole has two sustituents, an <u>halogen</u> and a <u>methoxy group</u>, which are <em>ortho-para</em> directing substituents.
Aryl sulfonic acids are easily synthesized by an electrophilic substitution reaction aromatic using <u>sulfur trioxide as an electrophile</u> (very reactive).
The reaction occurs in three steps:
- The attack on the electrophile forms the sigma complex.
- The loss of a proton regenerates an aromatic ring.
- The sulfonate group can be protonated in the presence of a strong acid (H₂SO₄).
Normally, a mixture of <em>ortho-para</em> substituted products would be obtained. However, since both <em>para</em> positions are occupied, only the <em>ortho </em>substituted product is obtained here.
Answer:
Left hand side:-
Carbon - 12
HYdrogen - 28
Oxygen - 38
Right hand side:-
Carbon - 12
Hydrogen - 28
Oxygen - 38
Since, the number of atoms each side are equal, the reaction is balanced.
Explanation:
The given reaction is:-

Left hand side:-
Carbon - 12
HYdrogen - 28
Oxygen - 38
Right hand side:-
Carbon - 12
Hydrogen - 28
Oxygen - 38
<u>Since, the number of atoms each side are equal, the reaction is balanced.</u>
Answer:
Yes. The solution would be optically active.
Explanation:
Diastereomer are defined as the image that is non mirror and non -identical. It is made up of two stereoisomers. They are formed when the two stereoisomers or more than two stereoisomers of the compound have the same configuration at the equivalent stereocenters.
In the given context, as the product given is a diastereomeric mixture, the product would have an optical activity in total.
So the answer is Yes.
Conduction: In the conduction, the heat is transferred from the hotter body to the colder body until the temperature on both bodies are equal.
In thermal equilibrium, there is no heat transfer as the heat is transferred till the temperature on the bodies are not same.
In the given problem, an iron bar at 200°C is placed in thermal contact with an identical iron bar at 120°C in an isolated system. After 30 minutes, the thermal equilibrium is attained. Then, the temperature on both iron bars are equal.Both iron bars are at 160°C in an isolated system.
But in an open system, the temperatures of the iron bars after 30 minutes would be less than 160°C. There will be heat lost to the surrounding. The room temperature is 25°C. There will be exchange of the heat occur between the iron bars and the surrounding. But It would take more than 30 minutes for both iron bars to reach 160°C because heat would be transferred less efficiently.