The correct response is C. Chlorine forms 1 covalent bond while Oxygen forms 2 covalent bonds.
Answer:
The forces involved in a collision are equal in size and directed in the opposite direction, and they accelerate both objects. Each object accelerates equally in collisions with things of equal mass.
Explanation:
Answer:
a) 3.98 x 10^-10
Explanation:
Hello,
In this case, for the given pH, we can compute the concentration of hydronium by using the following formula:
![pH=-log([H^+])](https://tex.z-dn.net/?f=pH%3D-log%28%5BH%5E%2B%5D%29)
Hence, solving for the concentration of hydronium:
![[H^+]=10^{-pH}=10^{-9.40}\\](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-9.40%7D%5C%5C)
![[H^+]=3.98x10^{-10}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D3.98x10%5E%7B-10%7DM)
Therefore, answer is a) 3.98 x 10^-10
Best regards.
The pH of the buffer is 6.1236.
Explanation:
The strength of any acid solution can be obtained by determining their pH. Even the buffer solution strength of the weak acid can be determined using pH. As the dissociation constant is given, we can determine the pKa value as the negative log of dissociation constant value.
![pKa=-log[H] = - log [ 5.66 * 10^{-7}]\\ \\pka = 7 - log (5.66)=7-0.753=6.247\\\\pka = 6.247](https://tex.z-dn.net/?f=pKa%3D-log%5BH%5D%20%3D%20-%20log%20%5B%205.66%20%2A%2010%5E%7B-7%7D%5D%5C%5C%20%5C%5Cpka%20%3D%207%20-%20log%20%285.66%29%3D7-0.753%3D6.247%5C%5C%5C%5Cpka%20%3D%206.247)
The pH of the buffer can be known as
![pH = pK_{a} + log[\frac{[A-]}{[HA]}}]](https://tex.z-dn.net/?f=pH%20%3D%20pK_%7Ba%7D%20%2B%20log%5B%5Cfrac%7B%5BA-%5D%7D%7B%5BHA%5D%7D%7D%5D)
The concentration of ![[A^{-}] = Moles of [A]/Total volume = 0.608/2 = 0.304 M\\](https://tex.z-dn.net/?f=%5BA%5E%7B-%7D%5D%20%3D%20Moles%20of%20%5BA%5D%2FTotal%20volume%20%3D%200.608%2F2%20%3D%200.304%20M%5C%5C)
Similarly, the concentration of [HA] = 
Then the pH of the buffer will be
pH = 6.247 + log [ 0.304/0.404]

So, the pH of the buffer is 6.1236.
answer is A
The kinetic theory is used to explain the behaviour of gases.
One of the assumptions states that "a gas is composed of a large number of identical molecules moving at different speeds".