Answer:
Pentan_1,5_di-al
Explanation:
OHC-CH₂-CH₂-CH₂-CHO
This is Pentan_1,5_di-al
If we break this compound, we will observe that there is presence aldehyde group and hence the functional group "al". This aldehyde is bonded to carbon 1 and carbon 5 respectively.
Also the pentan is due to presence of 5 carbon atoms.
Therefore, the IUPAC name of this compound (OHC-CH₂-CH₂-CH₂-CHO) is Pentan_1,5_di-al
Answer:
Explanation:
1)<u><em> Ionization equilibrium equation: given</em></u>
- H₂O(l) + H₂O(l) ⇌ H₃O⁺(aq) + OH⁻(aq)
2) <em><u>Ionization equilibrium constant, at 25°C, Kw: given</u></em>
<u>3) Stoichiometric mole ratio:</u>
As from the ionization equilibrium equation, as from the fact it is stated, the concentration of both ions, at 25°C, are equal:
- [H₃O⁺(aq)] = [OH⁻(aq)] = 1.0 × 10⁻⁷ M
- ⇒ Kw = [H3O⁺] [OH⁻] = 1.0 × 10⁻⁷ × 1.0 × 10⁻⁷ = 1.0 × 10⁻¹⁴ M
<u><em>4) A solution has a [OH⁻] = 3.4 × 10⁻⁵ M at 25 °C </em></u><em><u>and you need to calculate what the [H₃O⁺(aq)] is.</u></em>
Since the temperature is 25°, yet the value of Kw is the same, andy you can use these conditions:
Then you can substitute the known values and solve for the unknown:
- 1.0 × 10⁻¹⁴ M² = [H₃O⁺] × 3.4 × 10⁻⁵ M
- ⇒ [H₃O⁺] = 1.0 × 10⁻¹⁴ M² / ( 3.4 × 10⁻⁵ M ) = 2.9⁻¹⁰ M
As you see, the increase in the molar concentration of the ion [OH⁻] has caused the decrease in the molar concentration of the ion [H₃O⁺], to keep the equilibrium law valid.
Are you speaking of a density gradient, in which a more concentrated solution moves below a less concentrated solution?
In that case, the more concentrated solution has the greater density, and it will gradually sink below the less concentrated solution.
In the same way, a stone will sink in water, which is less dense than the stone.
Answer is: 1,92 mol/L·s.
Chemical reaction: 2D(g) + 3E(g) + F(g) → <span>2G(g) + H(g).
</span>H is increasing at 0,64 mol/L·<span>s.
From chemical reaction n(H) : n(E) = 1 : 3.
0,64 mol : n(E) = 1 : 3.
n(E) = 1,92 mol.
</span>E is decreasing at 1,92 mol/L·s.
Atomic mass deals with the number of protons and neutrons added together, atomic number deals with protons only, though isotopes can be explained like this, say you had a hydrogen atom it's one proton and one electron if you add a neutron to it, the hydrogen becomes Deuterium which is a isotope of hydrogen it's the same atom just a neutron added to it for a different atomic mass if only slightly changed