Answer:
There is 50.2 kJ heat need to heat 300 gram of water from 10° to 50°C
Explanation:
<u>Step 1: </u>Data given
mass of water = 300 grams
initial temperature = 10°C
final temperature = 50°C
Temperature rise = 50 °C - 10 °C = 40 °C
Specific heat capacity of water = 4.184 J/g °C
<u>Step 2:</u> Calculate the heat
Q = m*c*ΔT
Q = 300 grams * 4.184 J/g °C * (50°C - 10 °C)
Q = 50208 Joule = 50.2 kJ
There is 50.2 kJ heat need to heat 300 gram of water from 10° to 50°C
Answer: A boron atom has 2 electrons at the first energy level and 3 electrons at the second energy level.
Number of Atoms in Gold for given mass can be calculated using following formula,
# of Moles = Number of Atoms / 6.022 × 10²³
Or,
Number of Atoms = Moles × 6.022 × 10²³ ------- (1)
Calculating Moles,
As,
Moles = Mass / M.mass
So,
Moles = 4.25 g / 196.96 g/mol
Moles = 0.0215
Putting value of mole in eq.1,
Number of Atoms = 0.0215 × 6.022 × 10²³
Number of Atoms = 1.299 × 10²²
Result:
4.25 g of Gold Nugget contains 1.299 × 10²² Atoms.