La respuesta es la letra b
Answer:
The acceleration of the object is 20 meters per second square = 20 m/s^2
Explanation:
Recall that acceleration is defined as the change in velocity divided the time it takes for the change. Therefore , if the object accelerates from rest (zero velocity) to 70 m/s , the change in velocity is (70 m/s - 0 m/s = 70 m/s)
which divided by the 3.5 seconds it took for the change, gives:
acceleration = (70 m/s / 3.5 s ) = 20 m/s^2
Answer:
a) T = 608.22 N
b) T = 608.22 N
c) T = 682.62 N
d) T = 533.82 N
Explanation:
Given that the mass of gymnast is m = 62.0 kg
Acceleration due to gravity is g = 9.81 m/s²
Thus; The weight of the gymnast is acting downwards and tension in the string acting upwards.
So;
To calculate the tension T in the rope if the gymnast hangs motionless on the rope; we have;
T = mg
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs the rope at a constant rate tension in the string is
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs up the rope with an upward acceleration of magnitude
a = 1.2 m/s²
the tension in the string is T - mg = ma (Since acceleration a is upwards)
T = ma + mg
= m (a + g )
= (62.0 kg)(9.81 m/s² + 1.2 m/s²)
= (62.0 kg) (11.01 m/s²)
= 682.62 N
When the gymnast climbs up the rope with an downward acceleration of magnitude
a = 1.2 m/s² the tension in the string is mg - T = ma (Since acceleration a is downwards)
T = mg - ma
= m (g - a )
= (62.0 kg)(9.81 m/s² - 1.2 m/s²)
= (62.0 kg)(8.61 m/s²)
= 533.82 N
The molarity remains the same so the ratio does not change
Answer:
t = 1.16 s.
Explanation:
Given,
speed of conveyor belt, v = 3.2 m/s
coefficient of friction,f = 0.28
Using newton second law
f = ma
and we also know that frictional force
f = μ N
f = μ m g
equating both the force equation
a = μ g
a = 0.28 x 9.81
a = 2.75 m/s²
Using Kinematic equation
v = u + at
3.2 = 0 + 2.75 x t
t = 1.16 s.
Time taken by the box to move without slipping is 1.16 s.