To answer the question above,
First, let's determine the speed of sound under the water.
S
peed of sound in water at 20oC = 1482m/s
<span>So λ = v/f = 1482m/s/(100kHz) I'm assuming your frequency is 100kHz </span>
<span>So λ would be = 0.0148m
I hope my answer helped you.</span>
Answer: B
Explanation: The motion sensor will measure the speed (velocity) of the car. Since the mass of the car has been measured, we can use formulas to calculate the average force.
Average net force = mass × acceleration
The mass of the toy car is measured first and noted
To calculate the velocity,
the car starts from rest since the velocity is associated with the distance and time after 5s.
Acceleration = velocity/time
With that the acceleration can be found.
acceleration is defined as change in velocity per unit time.
Then,
Force = mass × acceleration
Option B is the best answer
Answer:
g=9.64m/s^2.
Explanation:
Gravitational field strength (in other words, gravitational acceleration) is given as follows:g=GMR2g=R2GMwhere G=6.674×10−11m3kg⋅s2G=6.674×10−11kg⋅s2m3 is the gravitational constant, M=5.972×1024kgM=5.972×1024kg is the mass of the Earth, and R=6.371×106m+0.06×106m=6.431×106mR=6.371×106m+0.06×106m=6.431×106m is the distance from the center of the Earth to the required point above the surface (radius plus 60 km).
Question: How fast was the arrow moving before it joined the block?
Answer:
The arrow was moving at 15.9 m/s.
Explanation:
The law of conservation of energy says that the kinetic energy of the arrow must be converted into the potential energy of the block and arrow after it they join:

where
is the mass of the arrow,
is the mass of the block,
of the change in height of the block after the collision, and
is the velocity of the arrow before it hit the block.
Solving for the velocity
, we get:

and we put in the numerical values
,



and simplify to get:

The arrow was moving at 15.9 m/s
Answer:
ωi = 15.4 rev/sec
Explanation:
Since the movement of the fan is rotating, we are thus dealing with Rotational motion. In rotational motion, for angular speed to take place also means angular acceleration is also occurring.
angular acceleration = α = (change in speed)/(change in time)
angular acceleration = α = Δw/Δt = (ω - ωi) /(t- t₀) ..........(equation 1)
α = (ω -ωi) /(t- 0)
α = (ω-ωi) /t
ωi = ω - αt ......................................(equation 2)
where ωi is the initial angular speed.
We replace the values for ω, t and α
ωi = 105 rad/sec - ( 4.4 rad/sec² )(1.85s) = 96.86 rad/s = 15.415747788 rev/sec