Answer:
False
Explanation:
Most comets are located outside the solar system, in part of the cloud that originated from dust and gas that has remained virtually untouchable for billions of years. The orbit of these comets can reach the order of a light year. Thus, they are called long-period comets.
The period T of a pendulum is given by:

where L is the length of the pendulum while

is the gravitational acceleration.
In the pendulum of the problem, one complete vibration takes exactly 0.200 s, this means its period is

. Using this data, we can solve the previous formula to find L:
Answer:unbalanced: have direction,Change an objects motion, causes object to accelerate
Balanced:Do not change an objects motion, Net forces equal sum of all forces on object, and Does not equal 0 N
Explanation: Thats all I know Hoped I helped sum
We can use the law of conservation of energy to solve the problem.
The total mechanical energy of the system at any moment of the motion is:

where U is the potential energy and K the kinetic energy.
At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:

When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:

But the mechanical energy must be conserved, Ef=Ei, so we have

and so, the potential energy at the top of the flight is
The tension in the string holding the tassel and the vertical will the tension in the string
<h3>What is the tension in the string holding the tassel. ?</h3>
Generally, the equation for Tension is mathematically given as

Therefore

T = 0.1953 N
b).
Where


a = 1.13 m/s^2
In conclusion
T* sinФ = ma
2msinФ = ma
2sinФ = a


Ф = 34.4 °
In conclusion, The tension in the string holding the tassel and the vertical will the tension in the string
T = 0.1953 N
Ф = 34.4 °
Read more about tension
brainly.com/question/15880959
#SPJ1