Then as the electrons in the atoms fall back down, they emit electromagnetic radiation (light). The amount of light emitted at different wavelengths, called the emission spectrum, is shown for a discharge tube filled with hydrogen gas in Figure 12.6 below.
Transition metals are from group 3 to group 12.
Answer:
B. Increase the mass of one of the objects.
E. Decrease the distance between the objects.
Explanation:
To effect an increase in the gravitational force between two objects, the mass of both objects should be increased and the distance between them reduced.
This is derived from the Newton's law of universal gravitation:
- It states that "the force of gravity between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distance between them".
Therefore, if the mass of the two bodies are increased and the distance between them reduced, the gravitational force of attraction will increase.
Answer:
Nonmetals and nonmetals tend to form covalent bonds.
or
P and S
Explanation:
To increase the energy of the emitted electrons, the frequency of the incident light on the metal must be increased.
<h3>What is energy of emitted electron?</h3>
The maximum energy of an emitted electron is equal to the energy of a photon for frequency f (E = hf ), minus the energy required to eject an electron from the metal's surface, also known as work function.
Ee = E - W
<h3>Energy of the emitted electron</h3>
The energy of emitted electrons based on the research of Albert Einstein is given as;
E = hf
where;
- h is planck's constant
- f is frequency of incident light on the metal
Thus, to increase the energy of the emitted electrons, the frequency of the incident light on the metal must be increased.
Learn more about energy of electron here: brainly.com/question/11316046
#SPJ1