Answer:
The equivalent circuit for the electrode while the electrolyte gel is fresh
From the uploaded diagram the part A is the electrolyte, the part part B is the electrolyte gel when is fresh and the part C is the surface of the skin
Now as the electrolyte gel start to dry out the resistance
of the gel begins to increase and this starts to limit the flow of current . Now when the gel is then completely dried out the resistance of the gel
then increases to infinity and this in turn cut off flow of current.
The diagram illustrating this is shown on the second uploaded image
Explanation:
Assuming that the reaction from A and C to AC5 is only
one-step (or an elementary reaction) with a balanced chemical reaction of:
<span>A + 5 C ---> AC5 </span>
Therefore the formation constant can be easily calculated
using the following formula for formation constant:
Kf = product of products concentrations / product of reactants
concentration
<span>Kf = [AC5] / [A] [C]^5 </span>
---> Any coefficient from the balanced chemical
reaction becomes a power in the formula
Substituting the given values into the equation:
Kf = 0.100 M / (0.100 M) (0.0110 M)^5
Kf = 6,209,213,231
or in simpler terms
<span>Kf = 6.21 * 10^9 (ANSWER)</span>
Answer: Sheila's top brick will be cooler than Ralph’s top brick, because Sheila’s started with more total energy, so less energy had to transfer for both her bricks to reach the same total energy.
Explanation:
The higher the temperature of the gas, the faster the molecules move as they approach evaporating temperature. The lower the temperature of the gas, the slower the molecules move as they approach cooling temperature. The temperature controls how fast the molecules move