The answer to the question is letter b
When sulfate (SO₄²⁻) serves as the electron acceptor at the end of a respiratory electron transport chain, the product is hydrogen sulfide (H₂S).
How sulfate acts as electon acceptor and electron donor?
- Sulfate (SO₄²⁻) is used as the electron acceptor in sulfate reduction, which results in the production of hydrogen sulfide (H2S) as a metabolic byproduct.
- Many Gram negative bacteria identified in the -Proteobacteria use sulfate reduction, which is a rather energy-poor process.
- Gram-positive organisms connected to Desulfotomaculum or the archaeon Archaeoglobus also utilise it.
- Electron donors are needed for sulfate reduction, such as hydrogen gas or the carbon molecules lactate and pyruvate (organotrophic reducers) (lithotrophic reducers).
Learn more about the Electron transport chain with the help of the given link:
brainly.com/question/24372542
#SPJ4
Answer:
2000pound
Explanation:
Manganese metal is produced from the manganese(III) oxide, Mn2O3, which is found in manganite, a manganese ore. The manganese is reduced from its +3 oxidation state in Mn2O3 to the zero oxidation state of the uncharged metal by reacting the Mn2O3 with a reducing agent such as aluminum or carbon. How many pounds of manganese are in 1.261 tons of Mn2O3? (1 ton = 2000 pounds)
About 40 different substances called organophosphorus compounds are registered in the United States as insecticides. They are considered less damaging to the environment than some other insecticides because they breakdown relatively rapidly in the environment. The first of these organophosphorus insecticides to be produced was tetraethyl pyrophosphate, TEPP, which is 33.11% carbon, 6.95% hydrogen, 38.59% oxygen, and 21.35% phosphorus. It has a molecular mass of 290.190.
Answer:
Given that W=mg:
The weight of the box would be 50 N taking the value of 'g' as 10ms-2. Taking the value of 'g' as 9.8ms-2, the weight of the box would be 49 N.
(N = Newtons)
The answer is: [B]: "ionic salt" .
___________________________________________________
Note: There is no "sharing of electrons" among the elements in this compound; so this compound in NOT a "covalent molecule".
However, there is ionic bonding: Cu²⁺ and Cl⁻ ; to form: "CuCl₂" .
____________________________________________________