Answer:
1) 90.0 mL
2) 11.25 M
3) 0.477 M
4) 144 mL
Explanation:
The main formula that will be used for all these calculations is:
C₁V₁ = C₂V₂
C stands for concentration and V stands for volume and the subscripts 1 and 2 indicate an initial concentration or volume and a final concentration or volume.
For each problem, it's best to start by figuring out what you have and what you need to find. Figure out if you're looking for an initial value or a final value.
1) We need to find the initial volume. So, take what values you have and plug them in and then solve for whatever variable:
5.00 M · V₁ = 500.0mL · 0.900 M - divide by 5.00
C₁ = 90.0 mL
2) This time we're finding the initial concentration:
20.0mL · C₁ = 150.0mL · 1.50 M - divide by 20.0mL
C₂ = 11.25 M
3) Now we're finding the final concentration:
12.00mL · 3.50 M = 88.0mL · C₂ - divide by 88.0mL
C₂ = 0.477 M
4) Finally, we're looking for the final volume:
9.0mL · 8.0 M = 0.50 M · V₂ - divide by 0.50 M
V₂ = 144mL
Solid Magnesium is considered as active metal so it reacts with strong acids like HCl and H₂SO₄ liberating Hydrogen gas according to the following equations:
Mg(s) + 2 HCl(aq) → MgCl₂(aq) + H₂(g)
Mg(s) + H₂SO₄(aq) → MgSO₄(aq) + H₂(g)
so the amount of solid magnesium decrease by addition of strong acid to it.
Answer:
tungsten
Explanation:
I hope it's helpful for you
B - Atomic number. Dmitri Mendeleev organised the table according to atomic weight, however this caused problems with elements such as iodine and tellurium, Iodine has a higher mass, but a lower atomic number. And to make iodine in the same group as similar elements (halogens), Mendeleev had to break his own rules and put it before tellurium in the table. Moseley fixed this problem by ordering the elements according to atomic (proton) number.