Sufficient energy upon collision of particles and correct orientation of particles
Answer:
Forces acting on an object may be balanced or unbalanced. When the forces acting on an object have <u>equal</u> strength and act in opposite directions, they are <u>balanced</u>. These forces cancel out one another, and the <u>motion</u> of the object does not <u>change</u>. When the forces acting on an object are <u>unbalanced</u>, they do not cancel out one another. An unbalanced force acting on an object results in the object’s motion <u>changing</u>. The object may change its <u>speed</u> (speed up or slow
down), or it may change its <u>direction</u>. <u>Friction</u> is a force that resists the motion or the tendency toward motion between two objects in contact with each other. <u>Gravity</u> is a force that pulls objects toward one another. For example, Earth pulls all objects toward it.
Explanation:
Your question isn't quite clear, but if you're wondering if a chemical is polar or non-polar, you simply draw a VSEPR sketch and draw arrows where the bonds are. Only draw arrows between atoms, NOT between an atom and a lone pair of electrons. The arrow should point to the most electronegative atom (you should be given an electronegativity scale). Afterwards, you add up the arrows as vectors, and look at the sum of the vectors. If the sum is zero (CH4 is a good example), the chemical is non-polar. If the sum is a vector, the chemical is polar (H2O, or water, is polar).
Explanation:
According to the law of conservation of mass, mass can neither be created nor destroyed but it can simply be transformed from one form to another.
For example, 
Mass of Na = 23 g/mol
Mass of Cl = 35.5 g/mol
Sum of mass of reactants = mass of Na + mass of Cl
= 23 + 35.5 g/mol
= 58.5 g/mol
Mass of product formed is as follows.
Mass of NaCl = mass of Na + mass of Cl
= (23 g/mol + 35.5) g/mol
= 58.5 g/mol
As mass reacted is equal to the amount of mass formed. This shows that mass is conserved.
As a result, law of conservation of mass is obeyed.
in order to determine empirical formula we have to determine the mole ratio of the given elements
Let the total mass of the compound is 100g
as given that the compound has 40% sulfur , so mass of sulfur = 40g
as given that the compound has 60% oxygen, so mass of oxygen = 60g
let us calculate the moles of each element
Moles of sulfur = mass / atomic mass = 40 / 32 = 1.25
moles of oxygen = mass / atomic mass = 60/ 16 = 3.75
In order to get simple ratio of moles we will divide both the moles with least number of moles which is 1.25
moles of sulfur = 1.25 / 1.25 = 1
moles of oxygen = 3.75 /1.25 = 3
So empirical formula will be SO₃