Answer:
1.387 moles
Explanation:
Step 1:
The balanced equation for the reaction. This is illustrated below:
4Fe + 3O2 —> 2Fe2O3
Step 2:
Determination of the number of mole of Fe in 155.321g of Fe. This can be achieved by doing the following:
Mass of Fe = 155.321g
Molar Mass of Fe = 56g/mol
Number of mole of Fe =?
Number of mole = Mass/Molar Mass
Number of mole of Fe = 155.321/56
Number of mole of Fe = 2.774 mol
Step 3:
Determination of the number of mole of rust (Fe2O3) produced. This is illustrated below:
From the balanced equation above,
4 moles of Fe produced 2 moles of Fe2O3.
Therefore, 2.774 moles of Fe will produce = (2.774 x 2)/4 = 1.387 moles of Fe2O3.
Therefore, 1.387 moles of rust (Fe2O3) is produced from the reaction
The soda can from the car will lose CO2 more quickly. This is because of the kinetic energy and behavior of gas molecules under different temperatures. CO2 is more soluble in cold temperatures than hot. Cold temperatures minimize the kinetic energy of gas molecules; thus, preventing the gas from escaping the soda. This is why soda that comes from the refrigerator has more fizz or spirit than soda at room temperature.
Answer:
A barometer is an instrument used to measure air pressure and track weather systems. The most common unit of measurement used in barometers is the millibar (mb).
Explanation:
The molar volume, symbol Vm<span>, is the </span>volume occupied by one mole of a substance at a given temperature and pressure. <span>It is equal to the </span>molar<span> mass divided by the mass density. Therefore, we calculate as follows:
Vm(CO2) = 44.01 / 1.56 = 28.21 cm^3 / mol
</span>Vm(NH3) = 17.03 / 0.84 = 20.27 cm^3 / mol
Answer:
- <em>2NaCl → 2Na + Cl₂, ΔH = 822 kJ </em>
Explanation:
The chemical <em>equation</em> for the <em>formation of NaCl</em> is:
- Na + (1/2) Cl₂ → NaCl , ΔH = - 411 kJ
That equation means that 1 mole of NaCl is formed by the reaction of 1 mole of Na and 1/2 mole of Cl₂, with a release of energy of 411 kJ.
The <em>decomposition</em> of <em>NaCl</em> is the inverse of the <em>formation</em> reaction; thus, you swift products and reactants and inverse the sign of the <em>change in enthalpy:</em>
- NaCl → Na + 1/2 Cl₂, ΔH = 411 kJ
Since you want the decomposition of 2 moles you multiply the equation and the ΔH by 2:
- 2NaCl → 2Na + Cl₂, ΔH = 822 kJ ← answer