When a problem says a rigid vessel, it means that volume is constant. At constant V, pressure and temperature are indirectly proportional. We calculate as follows:
P1/T1 = P2/T2
P1/P2 = T1/T2
P1/P2 = 273.15 / 272.15
P1/P2 = 1.00
Hope this helps. Have a nice day.
Answer:
63.750KeV
Explanation:
We are given that
Initial velocity of second electron,
Radius,

1 m=100 cm
Magnetic field,B=0.0370 T
We have to determine the energy of the incident electron.
Mass of electron,
Charge on an electron,
Velocity,
Using the formula
Speed of electron,
Speed of second electron,

Kinetic energy of incident electron=
Kinetic energy of incident electron=
Kinetic energy of incident electron=
1KeV=1000eV
Answer:
When air resistance equals the weight of an object, the object has reached free fall.
Explanation:
- When an object has only force acting on it as gravity then, it experiences free fall.
- During free fall all the forces except gravity is balanced by one another.
- In the question, object's weight is balanced by air resistance so it is in the state of free fall.
- At the null point of free fall, object experiences weightlessness i.e. it feels like object is not attracted by any force.
Answer:
The ball impact velocity i.e(velocity right before landing) is 6.359 m/s
Explanation:
This problem is related to parabolic motion and can be solved by the following equations:
----------------------(1)
---------(2)
----------------------- (3)
Where:
x = m is the horizontal distance travelled by the golf ball
is the golf ball's initial velocity
is the angle (it was a horizontal shot)
t is the time
y is the final height of the ball
is the initial height of the ball
g is the acceleration due gravity
V is the final velocity of the ball
Step 1: finding t
Let use the equation(2)


s
Substituting (6) in (1):
-------------------(4)
Step 2: Finding
:
From equation(4)


m/s (8)
Substituting
in (3):
v =42 .01 - 15.3566
V=26.359 m/s