Answer:
<em><u>mark</u></em><em><u> </u></em><em><u>me</u></em><em><u> </u></em><em><u>brianliest</u></em><em><u> </u></em><em><u>plz</u></em>
Explanation:
- Law of inertia, also called Newton's first law, postulate in physics that, if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force.
- Law of Inertia states that a body in a state of rest or uniform motion remains in the same state until and unless an external force acts on it.
- A body continues to be in its state of rest or in uniform motion along a straight line unless an external force is applied on it. This law is also called law of inertia.
Answer:
Work out = 28.27 kJ/kg
Explanation:
For R-134a, from the saturated tables at 800 kPa, we get
= 171.82 kJ/kg
Therefore, at saturation pressure 140 kPa, saturation temperature is
= -18.77°C = 254.23 K
At saturation pressure 800 kPa, the saturation temperature is
= 31.31°C = 304.31 K
Now heat rejected will be same as enthalpy during vaporization since heat is rejected from saturated vapour state to saturated liquid state.
Thus,
=
= 171.82 kJ/kg
We know COP of heat pump
COP = 
= 
= 6.076
Therefore, Work out put, W = 
= 171.82 / 6.076
= 28.27 kJ/kg
A futuristic design for a car is to have a large solid disk-shaped flywheel within the car storing kinetic energy. The uniform flywheel has mass 370 kg with a radius of 0.500 m and can rotate up to 320 rev/s. Assuming all of this stored kinetic energy could be transferred to the linear velocity of the 3500-kg car, find the maximum attainable speed of the car.
Helium has an atomic mass of 4.00 atomic mass units.