1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga2289 [7]
2 years ago
8

See the attachment for the question

Physics
1 answer:
anyanavicka [17]2 years ago
6 0

Explanation:

w=1300rev/min * 1min/60sec *2pi rad/1 rev

w=136.135 rad/sec

speed = w*radius

speed = 136.135*2.25/2

speed = 153.15 m/sec

acceleration = speed square/radius

acc = 20848.8m/s^2

divide by 9.8 to get the value in gees

You might be interested in
A certain car battery with a 12.0 V emf has an initial charge of 131 A · h. Assuming that the potential across the terminals sta
irga5000 [103]

Answer:

The battery can supply 130 W for 11.75 h

Explanation:

In order to discover the time in wich the battery can supply this energy we need to find how much current is being drawn from it, we do that by using the equation for real power that is P = V*I, since we have V and P we can solve for I as seen bellow:

I = P/V = 130/12 = 10.834 A

We can use this value to find how many hours the power can supply said current. We do that by dividing the current capacity of the battery by the current drawn:

t = 141/12 = 11.75 h

7 0
3 years ago
The rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between
erma4kov [3.2K]

Answer:

Considering first question

    Generally the coefficient of performance of the air condition  is mathematically represented as

   COP  =  \frac{T_i}{T_o - T_i}

Here T_i is the inside temperature

while  T_o is the outside temperature

What this coefficient of performance represent is the amount of heat the air condition can remove with 1 unit of electricity

So it implies that the air condition removes   \frac{T_i}{T_o - T_i} heat with 1 unit of electricity

Now from the question we are told that the rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between inside and outside. This can be mathematically represented as

         Q \ \alpha \ (T_o - T_i)

=>        Q= k (T_o - T_i)

Here k is the constant of proportionality

So  

    since  1 unit of electricity  removes   \frac{T_i}{T_o - T_i}  amount of heat

   E  unit of electricity will remove  Q= k (T_o - T_i)

So

      E =  \frac{k(T_o - T_i)}{\frac{T_i}{ T_h - T_i} }

=>   E = \frac{k}{T_i} (T_o - T_i)^2

given that  \frac{k}{T_i} is constant

    =>  E \  \alpha  \  (T_o - T_i)^2

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square of the temperature difference.

 Considering the  second question

Assuming that  T_i   =  30 ^oC

 and      T_o  =  40 ^oC

Hence  

     E = K (T_o - T_i)^2

Here K stand for a constant

So  

        E = K (40 -  30)^2

=>      E = 100K

Now if  the  T_i   =  20 ^oC

Then

       E = K (40 -  20)^2

=>      E = 400 \ K

So  from this see that the electricity require (cost of powering and operating the air conditioner)when the inside temperature is low  is  much higher than the electricity required when the inside temperature is higher

Considering the  third question

Now in the case where the  heat that enters the building is at a rate proportional to the square-root of the temperature difference between inside and outside

We have that

       Q = k (T_o - T_i )^{\frac{1}{2} }

So

       E =  \frac{k (T_o - T_i )^{\frac{1}{2} }}{\frac{T_i}{T_o - T_i} }

=>   E =  \frac{k}{T_i} * (T_o - T_i) ^{\frac{3}{2} }

Assuming \frac{k}{T_i} is a constant

Then  

     E \ \alpha \ (T_o - T_i)^{\frac{3}{2} }

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square root  of the cube of the  temperature difference.

   

4 0
2 years ago
Diesel fuel is used in the engine of trucks that carry dirt fruit and other cargo. Fuel is burned in engines to make the motor m
Marina86 [1]

Answer: Fuel is burned in engines to make the motor move.

( Chemical to Mechanical )

Explanation:

during combustion of the diesel ( when the fuel is burnt in the engine of the vehicle, the diesel ( chemical energy ) is transformed or converted to Mechanical energy. This mechanical energy is what the truck uses in moving. Without the combustion of the fuel the vehicle won’t move and the combustion of diesel is achieved through compression unlike that of fuel.

4 0
3 years ago
How often a wave occurs in the waves
Jlenok [28]

Answer:

Frequency – The frequency of a wave is the number of waves that pass a given point in a certain amount of time. Frequency is measured in units called hertz (Hz), and is defined as the number of waves per second. A wave that occurs every second has a frequency of 1 wave per second (1/s) or 1 Hz.

3 0
2 years ago
What is the definition of Mutualism
noname [10]
Mutualism is a long-term relationship where two organisms interact in such a way that both of them benefits from that relationship.

For example, there is a relationship between a bird called "oxpecker", and a rhino. While the bird eats the harmful bugs (eg. tick) on the rhino's skin and relieves its hunger; the rhino gets rid of the bugs that harm it.
5 0
3 years ago
Read 2 more answers
Other questions:
  • A record turntable is rotating at 33 1 3 rev/min. a watermelon seed is on the turntable 5.0 cm from the axis of rotation. (a) ca
    15·2 answers
  • A rectangular loop of wire (8.0 cm by 3.0 cm) is in the x-y plane. there is a magnetic field of 4.5 t in the y-z plane that make
    12·1 answer
  • Three equal charges of magnitude 'e' are located at the vertices of an equilateral triangle of side 1m. Where should you place a
    9·1 answer
  • A worker pushes horizontally on a large crate with a force of 170 N, and the crate is moved 3.6 m. How much work was done
    15·1 answer
  • the gravity force between Mars and an object near Earth's surface as much lower than the force between an object on Earth surfac
    14·1 answer
  • Which property increases as an electromagnetic waves energy decreases
    15·2 answers
  • A roller coaster is traveling at 13 m/s when it approaches a hill that is 400 m long. Heading down the hill, it accelerates at 4
    12·1 answer
  • In certain cases, using both the momentum principle and energy principle to analyze a system is useful, as they each can reveal
    9·1 answer
  • Which part of the eye is used to see things in high detail?
    10·1 answer
  • The quadriceps muscles pull on the patella simultaneously. Below are the forces from each
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!