Partial Lunar Eclipse:
A partial lunar eclipse is when the earth gets between the Sun and Moon. However, all three bodies are not in alignment meaning we are able to see some more like part of the moon's surface as it moves in route of the Earth's shadow.
Total Lunar Eclipse:
The three celestial bodies are perfectly aligned which allows for the earth to completely block the sun's rays from hitting/reaching the moon. The sun is positions is in back of the Earth which then causes the shadow of the earth to be cast on the Moon covering the moon completely. When that happens you get the phenomenon called a total lunar eclipse.
Hopefully this helped and good luck.
data which is expressed in form of following way

here in above expression
= true value
= uncertainty in the value
now the relative uncertainty is given as

now by above formula we can say
a) 2.70 ± 0.05cm
here
True value = 2.70
uncertainty = 0.05
Relative uncertainty =
= 0.0185
b) 12.02 ± 0.08cm
here
True value = 12.02
uncertainty = 0.08
Relative uncertainty =
= 0.00665
Answer:
The measured redshift is z =2
Explanation:
Since the object is traveling near light speed, since v/c = 0.8, then we have to use a redshift formula for relativistic speeds.

Finding the redshift.
We can prepare the formula by dividing by lightspeed inside the square root to both numerator and denominator to get

Replacing the given information


Thus the measured redshift is z = 2.
Answer
given,
mass of the ball = 3 kg
swing in vertical circle with radius = 2 m
work done by the gravity = ?
work done by the tension = ?
Work done by the gravity = - m g Δh
Δ h = 2 + 2 = 4 m
Work done by the gravity =
= -117.6 J
work done by gravity is equal to -117.6 J
Work done by tension will be equal to zero.
Zero because tension is always perpendicular to velocity
work done by tension is equal to 0 J
Given parameters:
Initial velocity of Coin = 0m/s
Time taken before coin hits ground = 5.7s
Unknown:
Final velocity of the coin = ?
Velocity is displacement with time. To solve this problem, we have to apply one of the equations of motion.
The fitting one of them here is shown below;
V = U + gt
where;
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
t is the time taken
Here we use positive value of acceleration due to gravity because the coin is falling with the effect of acceleration and not against it.
Now input the parameters and solve;
V = 0 + 9.81 x 5.7
V = 55.917m/s
Therefore, the final velocity is 55.917m/s.